skip to main content


Title: Comparisons of some iterative algorithms for Biot equations
In this paper, we aim at solving the Biot model under stabilized finite element discretizations. To solve the resulting generalized saddle point linear systems, some iterative methods are proposed and compared. In the first method, we apply the GMRES algorithm as the outer iteration. In the second method, the Uzawa method with variable relaxation parameters is employed as the outer iteration method. In the third approach, Uzawa method is treated as a fixed-point iteration, the outer solver is the so-called Anderson acceleration. In all these methods, the inner solvers are preconditioners for the generalized saddle point problem. In the preconditioners, the Schur complement approximation is derived by using Fourier analysis approach. These preconditioners are implemented exactly or inexactly. Extensive experiments are given to justify the performance of the proposed preconditioners and to compare all the algorithms.  more » « less
Award ID(s):
1700328
NSF-PAR ID:
10055004
Author(s) / Creator(s):
;
Date Published:
Journal Name:
International journal of evolution equations
Volume:
10
Issue:
3-4
ISSN:
1549-2907
Page Range / eLocation ID:
267-282
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    It is known that the solutions to space‐fractional diffusion equations exhibit singularities near the boundary. Therefore, numerical methods discretized on the composite mesh, in which the mesh size is refined near the boundary, provide more precise approximations to the solutions. However, the coefficient matrices of the corresponding linear systems usually lose the diagonal dominance and are ill‐conditioned, which in turn affect the convergence behavior of the iteration methods.In this work we study a finite volume method for two‐sided fractional diffusion equations, in which a locally refined composite mesh is applied to capture the boundary singularities of the solutions. The diagonal blocks of the resulting three‐by‐three block linear system are proved to be positive‐definite, based on which we propose an efficient block Gauss–Seidel method by decomposing the whole system into three subsystems with those diagonal blocks as the coefficient matrices. To further accelerate the convergence speed of the iteration, we use T. Chan's circulant preconditioner31as the corresponding preconditioners and analyze the preconditioned matrices' spectra. Numerical experiments are presented to demonstrate the effectiveness and the efficiency of the proposed method and its strong potential in dealing with ill‐conditioned problems. While we have not proved the convergence of the method in theory, the numerical experiments show that the proposed method is convergent.

     
    more » « less
  2. The incremental Picard Yosida (IPY) method has recently been developed as an iteration for nonlinear saddle point problems that is as effective as Picard but more efficient. By combining ideas from algebraic splitting of linear saddle point solvers with incremental Picard‐type iterations and grad‐div stabilization, IPY improves on the standard Picard method by allowing for easier linear solves at each iteration—but without creating more total nonlinear iterations compared to Picard. This paper extends the IPY methodology by studying it together with Anderson acceleration (AA). We prove that IPY for Navier–Stokes and regularized Bingham fits the recently developed analysis framework for AA, which implies that AA improves the linear convergence rate of IPY by scaling the rate with the gain of the AA optimization problem. Numerical tests illustrate a significant improvement in convergence behavior of IPY methods from AA, for both Navier–Stokes and regularized Bingham.

     
    more » « less
  3. Abstract We propose a uniform block-diagonal preconditioner for condensed $H$(div)-conforming hybridizable discontinuous Galerkin schemes for parameter-dependent saddle point problems, including the generalized Stokes equations and the linear elasticity equations. An optimal preconditioner is obtained for the stiffness matrix on the global velocity/displacement space via the auxiliary space preconditioning technique (Xu (1994) The Auxiliary Space Method and Optimal Multigrid Preconditioning Techniques for Unstructured Grids, vol. 56. International GAMM-Workshop on Multi-level Methods (Meisdorf), pp. 215–235). A spectrally equivalent approximation to the Schur complement on the element-wise constant pressure space is also constructed, and an explicit computable exact inverse is obtained via the Woodbury matrix identity. Finally, the numerical results verify the robustness of our proposed preconditioner with respect to model parameters and mesh size. 
    more » « less
  4. null (Ed.)
    A computationally efficient one-shot approach with a low memory footprint is presented for unsteady optimization. The proposed technique is based on a novel and unique approach that combines local-in-time and fixed-point iteration methods to advance the unconverged primal and adjoint solutions forward and backward in time to evaluate the sensitivity of the globally time-integrated objective function. This is in some ways similar to the piggyback iterations in which primal and adjoint solutions are evaluated at a frozen design. During each cycle, the primal, adjoint, and design update problems are solved to advance the optimization problem. This new coupled approach is shown to provide significant savings in the memory footprint while reducing the computational cost of primal and adjoint evaluations per design cycle. The method is first applied to an inverse design problem for the unsteady lid-driven cavity. Following this, vortex suppression and mean drag reduction for a circular cylinder in crossflow is considered. Both of these objectives are achieved by optimizing the rotational speeds for steady or periodically oscillating excitations. For all cases presented in this work, the proposed technique is shown to provide significant reductions in memory as well as computational time. It is also shown that the unsteady optimization problem converges to the same optimal solution obtained using a conventional approach. 
    more » « less
  5. A computationally efficient "one-shot" approach with a low memory footprint is presented for unsteady design optimization. The proposed technique is based on a novel and unique approach that combines "local-in-time" and fixed-point iteration methods to advance the unconverged primal and adjoint solutions forward and backward in time to evaluate the sensitivity of the globally time-integrated objective function. This is in some ways similar to the "piggyback" iterations where primal and adjoint solutions are evaluated at a frozen design. During each cycle, the primal, adjoint, and design update problems are solved to advance the optimization problem. This new coupled approach is shown to provide significant savings in the memory footprint while reducing the computational cost of primal and adjoint evaluations per design cycle. The method is first applied to an inverse design problem for the unsteady lid-driven cavity. Following this, vortex suppression and mean drag reduction for a circular cylinder in cross-flow is considered. Both of these objectives are achieved by optimizing the rotational speeds for steady or periodically oscillating excitations. For all cases presented in this work, the proposed technique is shown to provide significant reductions in memory as well as computational time. It is also shown that the unsteady design optimization problem converges to the same optimal solution obtained using a conventional approach. 
    more » « less