skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Insights into transcriptional silencing and anti-silencing in Shigella flexneri : a detailed molecular analysis of the icsP virulence locus: Characterizing the S. flexneri icsP regulatory region
Award ID(s):
1757316
PAR ID:
10055153
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Molecular Microbiology
Volume:
108
Issue:
5
ISSN:
0950-382X
Page Range / eLocation ID:
505 to 518
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We encountered unexpected transgene silencing in Arabidopsis thaliana sperm cells; transgenes encoding proteins with no specific intracellular localization (cytoplasmic proteins) were silenced transcriptionally or posttranscriptionally. The mRNA of cytoplasmic protein transgenes tagged with a fluorescent protein gene was significantly reduced, resulting in undetectable fluorescent protein signals in the sperm cell. Silencing of the cytoplasmic protein transgenes in the sperm cell did not affect the expression of either its endogenous homologous genes or cotransformed transgenes encoding a protein with targeted intracellular localization. This transgene silencing in the sperm cell persisted in mutants of the major gene silencing machinery including DNA methylation. The incomprehensible, yet real, transgene silencing phenotypes occurring in the sperm cell could mislead the interpretation of experimental results in plant reproduction, and this Commentary calls attention to that risk and highlights details of this novel cytoplasmic protein transgene silencing. 
    more » « less
  2. Abstract PremiseAs the sister clade to angiosperms, extant gymnosperms are crucial for reconstructing ancestral gene regulatory networks in seed plants. This highlights the need for model systems representing each of their distinct lineages. However, tools to quickly and effectively investigate gene function in gymnosperms are still limited due to the challenges of long life cycles and large genome sizes. Species within the xerophytic genusEphedra(Gnetales) have comparatively smaller genomes and shrubby growth habits with shorter life spans, making them better suited for greenhouse cultivation and laboratory experiments. MethodsWe implement virus‐induced gene silencing (VIGS) to manipulate gene expression inEphedra tweedieanaviaAgrobacterium‐mediated vacuum infiltration of tobacco rattle virus (TRV1 and TRV2) into seedlings. ResultsTreatment resulted in highly efficient gene silencing of theE. tweedieana PHYTOENE DESATURASE(PDS) orthologEtwPDS. The expected photobleaching phenotype was observed as early as two weeks, and lasted at least five months in stems, shoot tips, leaves, axillary meristems, and lateral branches of treated plants. DiscussionWe report on virus‐induced targeted gene silencing ofPDSin a Gnetales representative to further enable functional studies of the genetic mechanisms underpinning adaptations in gymnosperms, an important and underrepresented lineage of seed plants. 
    more » « less
  3. null (Ed.)
    RNAi promises to reshape pest control by being nontoxic, biodegradable, and species specific. However, due to the plastic nature of RNAi, there is a significant variability in responses. In this study, we investigate small RNA pathways and processing of ingested RNAi trigger molecules in a hemipteran plant pest, the whitefly Bemisia tabaci . Unlike Drosophila , where the paradigm for insect RNAi technology was established, whitefly has abundant somatic piwi-associated RNAs (piRNAs). Long regarded as germline restricted, piRNAs are common in the soma of many invertebrates. We sought to exploit this for a novel gene silencing approach. The main principle of piRNA biogenesis is the recruitment of target RNA fragments into the pathway. As such, we designed synthetic RNAs to possess complementarity to the loci we annotated. Following feeding of these exogenous piRNA triggers knockdown as effective as conventional siRNA-only approaches was observed. These results demonstrate a new approach for RNAi technology that could be applicable to dsRNA-recalcitrant pest species and could be fundamental to realizing insecticidal RNAi against pests. 
    more » « less
  4. null (Ed.)