skip to main content


Title: What the ~1.4 Ga Xiamaling Formation can and cannot tell us about the mid‐Proterozoic ocean
Abstract

Despite a surge of recent work, the evolution of mid‐Proterozoic oceanic–atmospheric redox remains heavily debated. Constraining the dynamics of Proterozoic redox evolution is essential to determine the role, if any, that anoxia played in protracting the development of eukaryotic diversity. We present a multiproxy suite of high‐resolution geochemical measurements from a drill core capturing the ~1.4 Ga Xiamaling Formation, North China Craton. Specifically, we analyzed major and trace element concentrations, sulfur and molybdenum isotopes, and iron speciation not only to better understand the local redox conditions but also to establish how relevant our data are to understanding the contemporaneous global ocean. Our results suggest that throughout deposition of the Xiamaling Formation, the basin experienced varying degrees of isolation from the global ocean. During deposition of the lower organic‐rich shales (130–85 m depth), the basin was extremely restricted, and the reservoirs of sulfate and trace metals were drawn down almost completely. Above a depth of 85 m, shales were deposited in dominantly euxinic waters that more closely resembled a marine system and thus potentially bear signatures of coeval seawater. In the most highly enriched sample from this upper interval, the concentration of molybdenum is 51 ppm with a δ98Mo value of +1.7‰. Concentrations of Mo and other redox‐sensitive elements in our samples are consistent with a deep ocean that was largely anoxic on a global scale. Our maximum δ98Mo value, in contrast, is high compared to published mid‐Proterozoic data. This high value raises the possibility that the Earth's surface environments were transiently more oxygenated at ~1.4 Ga compared to preceding or postdating times. More broadly, this study demonstrates the importance of integrating all available data when attempting to reconstruct surface O2dynamics based on rocks of any age.

 
more » « less
NSF-PAR ID:
10055241
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Geobiology
Volume:
16
Issue:
3
ISSN:
1472-4677
Page Range / eLocation ID:
p. 219-236
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    By about 2.0 billion years ago (Ga), there is evidence for a period best known for its extended, apparent geochemical stability expressed famously in the carbonate–carbon isotope data. Despite the first appearance and early innovation among eukaryotic organisms, this period is also known for a rarity of eukaryotic fossils and an absence of organic biomarker fingerprints for those organisms, suggesting low diversity and relatively small populations compared to the Neoproterozoic era. Nevertheless, the search for diagnostic biomarkers has not been performed with guidance from paleoenvironmental redox constrains from inorganic geochemistry that should reveal the facies that were most likely hospitable to these organisms. Siltstones and shales obtained from drill core of the ca. 1.3–1.4 Ga Roper Group from the McArthur Basin of northern Australia provide one of our best windows into the mid‐Proterozoic redox landscape. The group is well dated and minimally metamorphosed (ofoil windowmaturity), and previous geochemical data suggest a relatively strong connection to the open ocean compared to other mid‐Proterozoic records. Here, we present one of the first integrated investigations of Mesoproterozoic biomarker records performed in parallel with established inorganic redox proxy indicators. Results reveal a temporally variable paleoredox structure through the Velkerri Formation as gauged from iron mineral speciation and trace‐metal geochemistry, vacillating between oxic and anoxic. Our combined lipid biomarker and inorganic geochemical records indicate at least episodic euxinic conditions sustained predominantly below the photic zone during the deposition of organic‐rich shales found in the middle Velkerri Formation. The most striking result is an absence of eukaryotic steranes (4‐desmethylsteranes) and only traces of gammacerane in some samples—despite our search across oxic, as well as anoxic, facies that should favor eukaryotic habitability and in low maturity rocks that allow the preservation of biomarker alkanes. The dearth of Mesoproterozoic eukaryotic sterane biomarkers, even within the more oxic facies, is somewhat surprising but suggests that controls such as the long‐term nutrient balance and other environmental factors may have throttled the abundances and diversity of early eukaryotic life relative to bacteria within marine microbial communities. Given that molecular clocks predict that sterol synthesis evolved early in eukaryotic history, and (bacterial) fossil steroids have been found previously in 1.64 Ga rocks, then a very low environmental abundance of eukaryotes relative to bacteria is our preferred explanation for the lack of regular steranes and only traces of gammacerane in a few samples. It is also possible that early eukaryotes adapted to Mesoproterozoic marine environments did not make abundant steroid lipids or tetrahymanol in their cell membranes.

     
    more » « less
  2. This Chapter considers triple oxygen isotope variations and their 4 Gyr temporal evolution in bulk siliciclastic sedimentary rocks and in granites. The d18O and D'17O values provide new insights into weathering in the modern and ancient hydrosphere and coeval crustal petrogenesis. We make use of the known geological events and processes that affect the rock cycle: supercontinent assembly and breakup that influence continent-scale and global climate, the fraction of the exposed crust undergoing weathering, and isotopic values of precipitation. New data from a 5000 m Texas drillhole into the Oligocene Frio Formation demonstrate minimal isotopic shifts from mudrocks to shales during diagenesis, mostly related to expulsion of water from smectite-rich loosely cemented sediment and its conversion to illite-rich shale. Inversion of triple oxygen isotope fractionations return isotopic values and temperatures along the hole depth that are more consistent with weathering conditions in the Oligocene and modern North America (d18O = -7 to -15‰, and T of +15 to +45°C) rather than d18O from 8 to 10‰ diagenetic water in the drill hole at 175-195°C. More precise T and d18Owater are obtained where the chemical index of alteration (CIA) based detrital contribution is subtracted from these sediments. Triple oxygen isotopes from suspended sediments in major world rivers record conditions (T and d18Ow) of their watersheds, and not the composition of bedrock because weathering is water-dominated. In parallel, the Chapter presents new analyses of 100 granites, orthogneisses, migmatites, tonalite-trondhjemite-granodiorite (TTG), and large-volume ignimbrites from around the world that range in age from 4 Ga to modern. Most studied granites are orogenic and anatectic in origin and represent large volume remelting/assimilation of shales and other metasediments; the most crustal and high-d18O of these are thus reflect and record the average composition of evolving continental crust. Granites also develop a significant progressive increase in d18O values from 6-7‰ (4-2.5 Ga) to 10-13‰ (~1.8-1.2 Ga) after which d18O stays constant or even decreases. More importantly, we observe a moderate -0.03‰ step-wise decrease in D'17O between 2.1 and 2.5 Ga, which is about half of the step-wise decrease observed in shales over this time interval. We suggest that granites, as well as shales, record the significant advent and greater volumetric appearance of low-D'17O, high-d18O weathering products (shales) altered by meteoric waters upon rapid emergence of large land masses at ~2.4 Ga, although consider alternative interpretations. These weathering products were incorporated into abundant 2.0-1.8 Ga orogens around the world, where upon remelting, they passed their isotopic signature to the granites. We further observe the dichotomy of high-D'17O Archean shales, and unusually low-D'17O Archean granites. We attribute this to greater contribution from shallow crustal hydrothermal contribution to shales in greenstone belts, while granites in the earliest 3.0-4.0 Ga crust and TTGs require involvement of hydrothermal products with lower-D'17O signatures at moderately high-d18O, which we attribute to secondary silicification of their protoliths before partial melting. The Chapter further discusses evolution of the shale record through geologic history and discusses the step-wise change in d18O and D'17O values at Archean/Proterozoic transition. Denser coverage for shales in the past 1 billion years permits investigation of the rocks and their weathering in the last supercontinent cycle, with observed lighter d18O values, characteristic for the mid-Phanerozoic at the initiation of Gondwana breakup. The continuing increase in d18O values of the shales since 4 Ga is interpreted to reflect accumulation of weathering products via shale accretion to continents, as low-density and buoyant shales tend to not subduct back into the mantle. The rock cycle passes triple oxygen isotopic signatures from precipitation to sedimentary, metasedimentary, and finally to anatectic igneous rocks. Continental crust became progressively heavier in d18O, lighter in D'17O due to incremental accumulation of high-d18O sediments in accretionary wedges. Second-order trends in d18O and D'17O are due to supercontinent cycles and glacial episodes. 
    more » « less
  3. Reconstructing the history of biological productivity and atmospheric oxygen partial pressure ( p O 2 ) is a fundamental goal of geobiology. Recently, the mass-independent fractionation of oxygen isotopes (O-MIF) has been used as a tool for estimating p O 2 and productivity during the Proterozoic. O-MIF, reported as Δ′ 17 O, is produced during the formation of ozone and destroyed by isotopic exchange with water by biological and chemical processes. Atmospheric O-MIF can be preserved in the geologic record when pyrite (FeS 2 ) is oxidized during weathering, and the sulfur is redeposited as sulfate. Here, sedimentary sulfates from the ∼1.4-Ga Sibley Formation are reanalyzed using a detailed one-dimensional photochemical model that includes physical constraints on air–sea gas exchange. Previous analyses of these data concluded that p O 2 at that time was <1% PAL (times the present atmospheric level). Our model shows that the upper limit on p O 2 is essentially unconstrained by these data. Indeed, p O 2 levels below 0.8% PAL are possible only if atmospheric methane was more abundant than today (so that p CO 2 could have been lower) or if the Sibley O-MIF data were diluted by reprocessing before the sulfates were deposited. Our model also shows that, contrary to previous assertions, marine productivity cannot be reliably constrained by the O-MIF data because the exchange of molecular oxygen (O 2 ) between the atmosphere and surface ocean is controlled more by air–sea gas transfer rates than by biological productivity. Improved estimates of p CO 2 and/or improved proxies for Δ′ 17 O of atmospheric O 2 would allow tighter constraints to be placed on mid-Proterozoic p O 2 . 
    more » « less
  4. Abstract

    The end‐Devonian Hangenberg Crisis constituted one of the greatest ecological and environmental perturbations of the Paleozoic Era. To date, however, it has been difficult to precisely constrain the occurrence of the Hangenberg Crisis in the Appalachian Basin of the United States and thus to directly assess the effects of this crisis on marine microbial communities and paleoenvironmental conditions. Here, we integrate organic and inorganic chemostratigraphic records compiled from two discrete outcrop locations to characterize the onset and paleoenvironmental transitions associated with the Hangenberg Crisis within the Cleveland Shale member of the Ohio Shale. The upper Cleveland Shale records both positive carbon (δ13Corg) and nitrogen (δ15Ntotal) isotopic excursions, and replenished trace metal inventories with links to eustatic rise. These dual but apparently temporally offset isotope excursions may be useful for stratigraphic correlation with other productive end‐Devonian epeiric marine locations. Deposition of the black shale succession occurred locally beneath a redox‐stratified water column with euxinic zones, with signs of strengthening denitrification during the Hangenberg Crisis interval, but with an otherwise stable and algal‐rich marine microbial community structure sustained in the surface mixed layer as ascertained by lipid biomarker assemblages. Discernible trace fossil signals in some horizons suggest, however, that bioturbation and seafloor oxygenation occurred episodically throughout this succession and highlight that geochemical proxies often fail to capture these rapid and sporadic redox fluctuations in ancient black shales. The paleoenvironmental conditions, source biota, and accumulations of black shale are consistent with expressions of the Hangenberg Crisis globally, suggesting this event is likely captured within the uppermost strata of the Cleveland Shale in North America.

     
    more » « less
  5. The Cedar Mountain Formation is thought to span a significant portion of the lower Cretaceous and the base of the upper Cretaceous (Valanginian to Cenomanian). As such, the Cedar Mountain Formation is important for understanding the transition of terrestrial ecosystems from those characterized by pre-angiosperm ecosystems of the Jurassic to the angiosperm-dominated ecosystems that characterized the height of dinosaur diversity in the later part of the Cretaceous. Lacustrine strata offer unique opportunities to shed light on environmental and climate conditions of the past. This study presents results from a multi-proxy study of lacustrine strata in the Cedar Mountain Formation termed “Lake Carpenter.” The sequence of strata is about ~30 m thick and located near Arches National Park. The lower ~7 m is characterized by dark organic-rich mudstones, shales, and tan limestones and dolostone. The middle portion between about 7 and 25m consists of more massive carbonate-rich strata with abundant aquatic fossils including ostracodes, charophytes, and fish scales. The upper portion to about 30 m consists of green to tan mudstones with carbonate nodules and increases in siliciclastic content. Carbonate mineralogies include calcite, high-magnesium calcite, and dolomite (including dolomicrites) based on XRD analyses. To put the lacustrine sequence into stratigraphic context, bulk organic C isotope values were utilized to construct a chemostratigraphic record. The carbon isotope values range from -32.3‰ to -21.1‰ vs. VPDB. Zircons from four suspected volcanic ash layers were analyzed for U-Pb using LA-ICP-MS. One of these produced concordant Cretaceous dates. The youngest zircons from this sample was analyzed using CA-ID-TIMS and produced a date of 115.65 ± 0.18 Ma. Based on the chemostratigraphic record and the U-Pb date, the deposition of the lacustrine sequence occurs in the mid to late Aptian and spans a time that is thought to have coincided with a cold snap based on marine records. Carbonate analyses of the carbonates within the lacustrine sequence ranges from -9.2‰ to +5.4‰ vs. VPDB for carbon and -9.3 to -0.3‰ vs. VPDB for oxygen. Overall, carbonate isotope data is positively covariant and along with the minerology, seems to suggest that the lake was a closed-basin, alkaline lake and would have likely experience significant evaporation. To investigate paleotemperature, selected samples were analyzed for clumped isotope values (47) to determine temperature of formation. Preliminary temperature estimates of calcite formation range from 27°C to 41°C. Estimates for dolomite range from 19°C to 21°C. Lacustrine carbonate formation typically is biased toward spring and summer and as such some of these temperatures (particularly the values for dolomites) seem slightly lower than expected for a greenhouse climate but may be consistent with a “cold-snap” during the late Aptian. Palustrine carbonates from the type section of the Ruby Ranch Member range 19.8°C to 44.5°C (Suarez et al. 2021) and suggests the lacustrine strata records a similar range in temperatures during the Aptian Stage in this part of North America. REFERENCES CITED: Suarez, MB, Knight, J, Snell, KE, Ludvigson, GA, Kirkland, JI, Murphy, L 2020. Multiproxy paleoclimate estimates of the continental Cretaceous Ruby Ranch Member of the Cedar Mountain Formation. In: Bojar, A-V, Pelc., A, Lecuyer, C, editors. Stable Isotopes Studies of Water Cycle and Terrestrial Environments. Geol Soc, London, Spec Pub, 507: https://doi.org/10.1144/SP507-2020-85 KEYWORDS: Early Cretaceous, lacustrine, stable isotopes, paleoclimate Presentation Mode: Invited Speaker 
    more » « less