Abstract This article describes a new fact, then analyzes its causes and consequences: in most countries, import tariffs and nontariff barriers are substantially lower on dirty than on clean industries, where an industry’s “dirtiness” is defined as its carbon dioxide (CO2) emissions per dollar of output. This difference in trade policy creates a global implicit subsidy to CO2 emissions in internationally traded goods and contributes to climate change. This global implicit subsidy to CO2 emissions totals several hundred billion dollars annually. The greater protection of downstream industries, which are relatively clean, substantially accounts for this pattern. The downstream pattern can be explained by theories where industries lobby for low tariffs on their inputs but final consumers are poorly organized. A quantitative general equilibrium model suggests that if countries applied similar trade policies to clean and dirty goods, global CO2 emissions would decrease and global real income would change little.
more »
« less
The Geometry of Nutrient Space–Based Life-History Trade-Offs: Sex-Specific Effects of Macronutrient Intake on the Trade-Off between Encapsulation Ability and Reproductive Effort in Decorated Crickets
- Award ID(s):
- 1654028
- PAR ID:
- 10055256
- Date Published:
- Journal Name:
- The American Naturalist
- Volume:
- 191
- Issue:
- 4
- ISSN:
- 0003-0147
- Page Range / eLocation ID:
- 452 to 474
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Trade liberalization changes the volatility of returns by reducing the negative correlation between local prices and productivity shocks. In this paper, we explore these second‐moment effects of trade. Using forty years of agricultural micro‐data from India, we show that falling trade costs due to expansions of the Indian highway network reduced the responsiveness of local prices to local yields but increased the responsiveness of local prices to yields elsewhere. In response, farmers shifted their production toward crops with less volatile yields, especially so for those with poor access to risk mitigating technologies such as banks. We then characterize how volatility affects farmers' crop allocation using a portfolio choice framework where returns are determined in general equilibrium by a many‐location, many‐good Ricardian trade model with flexible trade costs. Finally, we structurally estimate the model—recovering farmers' risk‐return preferences from the gradient of the mean‐variance frontier at their observed crop choices—to quantify the second‐moment effects of trade. The simultaneous expansion of both the highway and rural bank networks increased the mean and the variance of farmer real income, with the first‐moment effect dominating such that expected welfare rose 4.4%. But had rural bank access remained unchanged, welfare gains would have been only half as great, as risk mitigating technologies allowed farmers to take advantage of higher‐risk higher‐return allocations.more » « less
An official website of the United States government

