skip to main content

Title: Pd-PEPPSI: Water-Assisted Suzuki−Miyaura Cross-Coupling of Aryl Esters at Room Temperature using a Practical Palladium-NHC (NHC=N-Heterocyclic Carbene) Precatalyst
A Pd-PEPPSI-catalyzed (Pd = Palladium, PEPPSI = pyridine-enhanced precatalyst preparation stabilization and initiation) Suzuki-Miyaura cross-coupling of aryl esters via selective C–O cleavage at room temperature is reported. The developed catalyst system displays broad substrate scope with respect to both components under practical ambient reaction conditions using readily-available, cheap, modular, air- and moisturestable Pd-NHC precatalyst (NHC = N-heterocyclic carbene). The use of water proved crucial for achieving high reactivity in this coupling. The catalyst system represents the mildest conditions for the Suzuki-Miyaura cross-coupling of aryl esters reported to date. The protocol also allowed for achieving TON >1,000 (TON = turnover number) in the Suzuki-Miyaura ester coupling for the first time.
Authors:
; ; ;
Award ID(s):
1650766
Publication Date:
NSF-PAR ID:
10055423
Journal Name:
Advanced Synthesis & Catalysis
ISSN:
1615-4150
Sponsoring Org:
National Science Foundation
More Like this
  1. The cross-coupling of aryl esters has emerged as a powerful platform for the functionalization of otherwise inert acyl C–O bonds in chemical synthesis and catalysis. Herein, we report a combined experimental and computational study on the acyl Suzuki–Miyaura cross-coupling of aryl esters mediated by well-defined, air- and moisture-stable Pd( ii )–NHC precatalysts [Pd(NHC)(μ-Cl)Cl] 2 . We present a comprehensive evaluation of [Pd(NHC)(μ-Cl)Cl] 2 precatalysts and compare them with the present state-of-the-art [(Pd(NHC)allyl] precatalysts bearing allyl-type throw-away ligands. Most importantly, the study reveals [Pd(NHC)(μ-Cl)Cl] 2 as the most reactive precatalysts discovered to date in this reactivity manifold. The unique synthetic utilitymore »of this unconventional O–C(O) cross-coupling is highlighted in the late-stage functionalization of pharmaceuticals and sequential chemoselective cross-coupling, providing access to valuable ketone products by a catalytic mechanism involving Pd insertion into the aryl ester bond. Furthermore, we present a comprehensive study of the catalytic cycle by DFT methods. Considering the clear advantages of [Pd(NHC)(μ-Cl)Cl] 2 precatalysts on several levels, including facile one-pot synthesis, superior atom-economic profile to all other Pd( ii )–NHC catalysts, and versatile reactivity, these should be considered as the ‘first-choice’ catalysts for all routine applications in ester O–C(O) bond activation.« less
  2. The Suzuki-Miyaura cross-coupling has been widely recognized as one of the most important methods for the construction of C–C bonds. However, in contrast to traditional aryl halide or pseudohalide electrophiles, coupling reactions with unactivated C–N and C–O electrophiles have proven significantly more challenging. Here we report the first general palladium-catalyzed Suzuki-Miyaura cross-coupling of both common amides and aryl esters through the selective cleavage of the C–N and C–O bonds under exceedingly mild conditions. Notably, for the first time we demonstrate selective C(acyl)– N and C(acyl)–O cleavage/cross-coupling under the same reaction conditions. The reaction uses a commercially available, bench-stable and operationally-convenientmore »(n3-1-t-Bu-indenyl)Pd(IPr)(Cl) precatalyst. Furthermore, we demonstrate that the reactivity of generic amides and aryl esters can be correlated with barriers to isomerization around the C(acyl)–X (X = N, O) bond, thus providing a blueprint for the development of a broad range of novel coupling reactions of ester and amide electrophiles by the selective activation of C–O and C–N bonds.« less
  3. Although N-heterocyclic carbenes (NHCs) have been known as ligands for organometallic complexes since the 1960s, these carbenes did not attract considerable attention until Arduengo et al. reported the isolation of a metal-free imidazol-2-ylidene in 1991. In 2001 Crabtree et al. reported a few complexes featuring an NHC isomer, namely an imidazol-5-ylidene, also termed abnormal NHC (aNHCs). In 2009, it was shown that providing to protect the C-2 position of an imidazolium salt, the deprotonation occurred at the C-5 position, affording imidazol-5-ylidenes that could be isolated. Over the last ten years, stable aNHCs have been used for designing a range ofmore »catalysts employing Pd( ii ), Cu( i ), Ni( ii ), Fe(0), Zn( ii ), Ag( i ), and Au( i / iii ) metal based precursors. These catalysts were utilized for different organic transformations such as the Suzuki–Miyaura cross-coupling reaction, C–H bond activation, dehydrogenative coupling, Huisgen 1,3-dipolar cycloaddition (click reaction), hydroheteroarylation, hydrosilylation reaction and migratory insertion of carbenes. Main-group metal complexes were also synthesized, including K( i ), Al( iii ), Zn( ii ), Sn( ii ), Ge( ii ), and Si( ii / iv ). Among them, K( i ), Al( iii ), and Zn( ii ) complexes were used for the polymerization of caprolactone and rac -lactide at room temperature. In addition, based on the superior nucleophilicity of aNHCs, relative to that of their nNHCs isomers, they were used for small molecules activation, such as carbon dioxide (CO 2 ), nitrous oxide (N 2 O), tetrahydrofuran (THF), tetrahydrothiophene and 9-borabicyclo[3.3.1]nonane (9BBN). aNHCs have also been shown to be efficient metal-free catalysts for ring opening polymerization of different cyclic esters at room temperature; they are among the most active metal-free catalysts for ε-caprolactone polymerization. Recently, aNHCs successfully accomplished the metal-free catalytic formylation of amides using CO 2 and the catalytic reduction of carbon dioxide, including atmospheric CO 2 , into methanol, under ambient conditions. Although other transition metal complexes featuring aNHCs as ligand have been prepared and used in catalysis, this review article summarize the results obtained with the isolated aNHCs.« less
  4. Although the palladium-catalyzed Suzuki-Miyaura cross-coupling of aryl esters has received significant attention, there is a lack of methods that utilize cheap and readily accessible Pd-phosphane catalysts, and can be routinely carried out with high cross-coupling selectivity. Herein, we report the first general method for the cross-coupling of pentafluorophenyl esters (pentafluorophenyl = pfp) by selective C–O acyl cleavage. The reaction proceeds efficiently using Pd(0)/phosphane catalyst systems. The unique characteristics of pentafluorophenyl esters are reflected in the fully selective cross-coupling vs. phenolic esters. Of broad synthetic interest, this report establishes pentafluorophenyl esters as new, highly reactive, bench-stable, economical, ester-based, electrophilic acylative reagentsmore »via acyl-metal intermediates. Mechanistic studies strongly support a unified reactivity scale of acyl electrophiles by C(O)–X (X = N, O) activation. The reactivity of pfp esters can be correlated with barriers to isomerization around the C(acyl)–O bond.« less
  5. In this Special Issue on N-Heterocyclic Carbenes and Their Complexes in Catalysis, we report the first example of Suzuki–Miyaura cross-coupling of amides catalyzed by well-defined, air- and moisture-stable nickel/NHC (NHC = N-heterocyclic carbene) complexes. The selective amide bond N–C(O) activation is achieved by half-sandwich, cyclopentadienyl [CpNi(NHC)Cl] complexes. The following order of reactivity of NHC ligands has been found: IPr > IMes > IPaul ≈ IPr*. Both the neutral and the cationic complexes are efficient catalysts for the Suzuki–Miyaura cross-coupling of amides. Kinetic studies demonstrate that the reactions are complete in < 1 h at 80 °C. Complete selectivity for themore »cleavage of exocyclic N-acyl bond has been observed under the experimental conditions. Given the utility of nickel catalysis in activating unreactive bonds, we believe that well-defined and bench-stable [CpNi(NHC)Cl] complexes will find broad application in amide bond and related cross-couplings of bench-stable acyl-electrophiles.« less