The performance of x-ray free electron lasers and ultrafast electron diffraction experiments is largely dependent on the brightness of electron sources from photoinjectors. The maximum brightness from photoinjectors at a particular accelerating gradient is limited by the mean transverse energy (MTE) of electrons emitted from photocathodes. For high quantum efficiency (QE) cathodes like alkali-antimonide thin films, which are essential to mitigate the effects of non-linear photoemission on MTE, the smallest possible MTE and, hence, the highest possible brightness are limited by the nanoscale surface roughness and chemical inhomogeneity. In this work, we show that high QE Cs3Sb films grown on lattice-matched strontium titanate (STO) substrates have a factor of 4 smoother, chemically uniform surfaces compared to those traditionally grown on disordered Si surfaces. We perform simulations to calculate roughness induced MTE based on measured topographical and surface-potential variations on the Cs3Sb films grown on STO and show that these variations are small enough to have no consequential impact on the MTE and, hence, the brightness.
This study reports successful deposition of high quantum efficiency (QE) bialkali antimonide K2CsSb photocathodes on graphene films. The results pave the way for an ultimate goal of encapsulating technologically relevant photocathodes for accelerator technology with an atomically thin protecting layer to enhance lifetime while minimizing QE losses. A QE of 17% at ≈3.1 eV (405 nm) is the highest value reported so far on graphene substrates and is comparable to that obtained on stainless steel and nickel reference substrates. The spectral responses of the photocathodes on graphene exhibit signature features of K2CsSb including the characteristic absorption at ≈2.5 eV. Materials characterization based on X‐ray fluorescence and X‐ray diffraction reveals that the composition and crystal quality of these photocathodes deposited on graphene is comparable to those deposited on a reference substrate. Quantitative agreement between optical calculations and QE measurements for the K2CsSb on free suspended graphene and a graphene‐coated metal substrate further confirms the high‐quality interface between the photocathodes and graphene. Finally, a correlation between the QE and graphene quality as characterized by Raman spectroscopy suggests that a lower density of atomistic defects in the graphene films leads to higher QE of the deposited K2CsSb photocathodes.
more » « less- NSF-PAR ID:
- 10055764
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials Interfaces
- Volume:
- 5
- Issue:
- 13
- ISSN:
- 2196-7350
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We report on the growth and characterization of optical quality multiple quantum well structures of Zn
x Cd1−x Se/Znx Cdy Mg1−x −y Se on an ultra‐thin Bi2Se3/CdTe virtual substrate on c‐plane Al2O3(sapphire). Excellent quality highly oriented films grown along the (111) direction were achieved as evidenced by reflection high energy electron diffraction and X‐ray diffraction studies. We also observed room temperature and 77 K photoluminescence emission with peak energies at 77 K of 2.407 eV and linewidths of 56 meV comparable to those achieved on structures grown on InP. Exfoliation of the structures is also possible due to the van der Waals bonding of Bi2Se3. Exfoliated (substrate free) films exhibit photoluminescence emission nearly identical to that of the supported film. Additionally, contactless electroreflectance measurements show good agreement with simulations of the multiple quantum well structure as well as evidence of excited state levels. These results open new avenues of research for substrate independent epitaxy and the possibility of ultra‐thin electronics. -
The electrical properties of graphene on dielectric substrates, such as silicon carbide (SiC), have received much attention due to their interesting applications. This work presents a method to grow graphene on a 6H-SiC substrate at a pressure of 35 Torr by using the hot filament chemical vapor deposition (HFCVD) technique. The graphene deposition was conducted in an atmosphere of methane and hydrogen at a temperature of 950 °C. The graphene films were analyzed using Raman spectroscopy, scanning electron microscopy, atomic force microscopy, energy dispersive X-ray, and X-ray photoelectron spectroscopy. Raman mapping and AFM measurements indicated that few-layer and multilayer graphene were deposited from the external carbon source depending on the growth parameter conditions. The compositional analysis confirmed the presence of graphene deposition on SiC substrates and the absence of any metal involved in the growth process.more » « less
-
null (Ed.)Single-crystalline membranes of functional materials enable the tuning of properties via extreme strain states; however, conventional routes for producing membranes require the use of sacrificial layers and chemical etchants, which can both damage and limit the ability to make membranes ultrathin. Here we demonstrate the epitaxial growth of cubic and hexagonal Heusler compounds on graphene-terminated Al$_2$O$_3$ substrates. The weak Van der Waals interactions of graphene enable the mechanical exfoliation of LaPtSb and GdPtSb films to yield free-standing membranes. Despite the presence of the graphene interlayer, the Heusler films have epitaxial registry to the underlying sapphire, as revealed by x-ray diffraction, reflection high energy electron diffraction, and transmission electron microscopy. Some films show a uniform in-plane rotation of several degrees with respect to the substrate, which we attribute to a combination of lattice mismatch and weakened Heusler film / sapphire substrate interactions through graphene. The residual resistivity of semi free-standing films on graphene-terminated substrates is similar to the residual resistivity of films grown by direct epitaxy. Our graphene-mediated approach provides a promising platform for tuning the magnetic, topological, and multiferroic properties of Heuslers in a clean, single-crystalline membrane system.more » « less
-
The in situ metalorganic chemical vapor deposition (MOCVD) growth of Al 2 O 3 dielectrics on β-Ga 2 O 3 and β-(Al x Ga 1−x ) 2 O 3 films is investigated as a function of crystal orientations and Al compositions of β-(Al x Ga 1−x ) 2 O 3 films. The interface and film qualities of Al 2 O 3 dielectrics are evaluated by high-resolution x-ray diffraction and scanning transmission electron microscopy imaging, which indicate the growth of high-quality amorphous Al 2 O 3 dielectrics with abrupt interfaces on (010), (100), and [Formula: see text] oriented β-(Al x Ga 1−x ) 2 O 3 films. The surface stoichiometries of Al 2 O 3 deposited on all orientations of β-(Al x Ga 1−x ) 2 O 3 are found to be well maintained with a bandgap energy of 6.91 eV as evaluated by high-resolution x-ray photoelectron spectroscopy, which is consistent with the atomic layer deposited (ALD) Al 2 O 3 dielectrics. The evolution of band offsets at both in situ MOCVD and ex situ ALD deposited Al 2 O 3 /β-(Al x Ga 1−x ) 2 O 3 is determined as a function of Al composition, indicating the influence of the deposition method, orientation, and Al composition of β-(Al x Ga 1−x ) 2 O 3 films on resulting band alignments. Type II band alignments are determined at the MOCVD grown Al 2 O 3 /β-(Al x Ga 1−x ) 2 O 3 interfaces for the (010) and (100) orientations, whereas type I band alignments with relatively low conduction band offsets are observed along the [Formula: see text] orientation. The results from this study on MOCVD growth and band offsets of amorphous Al 2 O 3 deposited on differently oriented β-Ga 2 O 3 and β-(Al x Ga 1−x ) 2 O 3 films will potentially contribute to the design and fabrication of future high-performance β-Ga 2 O 3 and β-(Al x Ga 1−x ) 2 O 3 based transistors using MOCVD in situ deposited Al 2 O 3 as a gate dielectric.more » « less