Abstract Black carbon (BC) from fossil fuel and biomass combustion darkens the snow and makes it melt sooner. The BC footprint of research activities and tourism in Antarctica has likely increased as human presence in the continent has surged in recent decades. Here, we report on measurements of the BC concentration in snow samples from 28 sites across a transect of about 2,000 km from the northern tip of Antarctica (62°S) to the southern Ellsworth Mountains (79°S). Our surveys show that BC content in snow surrounding research facilities and popular shore tourist-landing sites is considerably above background levels measured elsewhere in the continent. The resulting radiative forcing is accelerating snow melting and shrinking the snowpack on BC-impacted areas on the Antarctic Peninsula and associated archipelagos by up to 23 mm water equivalent (w.e.) every summer.
more »
« less
Near-Surface Refractory Black Carbon Observations in the Atmosphere and Snow in the McMurdo Dry Valleys, Antarctica, and Potential Impacts of Foehn Winds: Black carbon aerosols in Antarctica
- Award ID(s):
- 1637708
- PAR ID:
- 10055808
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Atmospheres
- Volume:
- 123
- Issue:
- 5
- ISSN:
- 2169-897X
- Page Range / eLocation ID:
- 2877 to 2887
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract The removal mechanism of refractory deep-ocean dissolved organic carbon (deep-DOC) is poorly understood. The Amundsen Sea Polynya (ASP) serves as a natural test basin for assessing the fate of deep-DOC when it is supplied with a large amount of fresh-DOC and exposed to strong solar radiation during the polynya opening in austral summer. We measured the radiocarbon content of DOC in the water column on the western Amundsen shelf. The radiocarbon content of DOC in the surface water of the ASP reflected higher primary production than in the region covered by sea ice. The radiocarbon measurements of DOC, taken two years apart in the ASP, were different, suggesting rapid cycling of DOC. The increase in DOC concentration was less than expected from the observed increase in radiocarbon content from those at the greatest depths. Based on a radiocarbon mass balance, we show that deep-DOC is consumed along with fresh-DOC in the ASP. Our observations imply that water circulation through the surface layer, where fresh-DOC is produced, may play an important role in global DOC cycling.more » « less
An official website of the United States government
