skip to main content


Title: Evolution of hindlimb bone dimensions and muscle masses in house mice selectively bred for high voluntary wheel-running behavior
We have used selective breeding with house mice to study coadaptation of morphology and physiology with the evolution of high daily levels of voluntary exercise. Here, we compared hindlimb bones and muscle masses from the 11th generation of four replicate High Runner (HR) lines of house mice bred for high levels of voluntary wheel running with four non‐selected control (C) lines. Mass, length, diameter, and depth of the femur, tibia‐fibula, and metatarsal bones, as well as masses of gastrocnemius and quadriceps muscles, were compared by analysis of covariance with body mass or body length as the covariate. Mice from HR lines had relatively wider distal femora and deeper proximal tibiae, suggesting larger knee surface areas, and larger femoral heads. Sex differences in bone dimensions were also evident, with males having thicker and shorter hindlimb bones when compared with females. Several interactions between sex, linetype, and/or body mass were observed, and analyses split by sex revealed several cases of sex‐specific responses to selection. A subset of the HR mice in two of the four HR lines expressed the mini‐muscle phenotype, characterized mainly by an ∼50% reduction in hindlimb muscle mass, caused by a Mendelian recessive mutation, and known to have been under positive selection in the HR lines. Mini‐muscle individuals had elongated distal elements, lighter and thinner hindlimb bones, altered 3rd trochanter muscle insertion positions, and thicker tibia‐fibula distal widths. Finally, several differences in levels of directional or fluctuating asymmetry in bone dimensions were observed between HR and C, mini‐ and normal‐muscled mice, and the sexes. This study demonstrates that skeletal dimensions and muscle masses can evolve rapidly in response to directional selection on locomotor behavior.  more » « less
Award ID(s):
1655362
NSF-PAR ID:
10055964
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Morphology
Volume:
0
ISSN:
0362-2525
Page Range / eLocation ID:
xx-xx
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The size and shape of articular cartilage in the limbs of extant vertebrates are highly variable, yet they are critical for understanding joint and limb function in an evolutionary context. For example, inferences about unpreserved articular cartilage in early tetrapods have implications for how limb length, joint range of motion, and muscle leverage changed over the tetrapod water-land transition. Extant salamanders, which are often used as functional models for early limbed vertebrates, have much thicker articular cartilage than most vertebrate groups, but the exact proportion of cartilage and how it varies across salamander species is unknown. I aimed to quantify this variation in a sample of 13 salamanders representing a broad range of sizes, modes of life, and genera. Using contrast-enhanced micro-CT, cartilage dimensions and bone length were measured non-destructively in the humerus, radius, ulna, femur, tibia, and fibula of each specimen. Cartilage correction factors were calculated as the combined thickness of the proximal and distal cartilages divided by the length of the bony shaft. Articular cartilage added about 30% to the length of the long bones on average. Cartilage was significantly thicker in aquatic salamanders (42 ± 14% in the humerus and 35 ± 8 in the femur) than in terrestrial salamanders (21 ± 7% in both humerus and femur). There was no consistent relationship between relative cartilage thickness and body size or phylogenetic relatedness. In addition to contributing to limb length, cartilage caps increased the width and breadth of the epiphyses by amounts that varied widely across taxa. To predict the effect of salamander-like cartilage correction factors on muscle leverage, a simplified model of the hindlimb of the Devonian stem tetrapod Acanthostega was built. In this model, the lever arms of muscles that cross the hip at an oblique angle to the femur was increased by up to six centimeters. Future reconstructions of osteological range of motion and muscle leverage in stem tetrapods and stem amphibians can be made more rigorous by explicitly considering the possible effects of unpreserved cartilage and justifying assumptions based on available data from extant taxa, including aquatic and terrestrial salamanders. 
    more » « less
  2. Abstract

    Selection experiments can elucidate the varying course of adaptive changes across generations. We examined the appendicular skeleton of house mice from four replicate High Runner (HR) lines bred for physical activity on wheels and four non‐selected Control (C) lines. HR mice reached apparent selection limits between generations 17 and 27, running ~3‐fold more than C. Studies at generations 11, 16, and 21 found that HR mice had evolved thicker hindlimb bones, heavier feet, and larger articular surface areas of the knee and hip joint. Based on biomechanical theory, any or all of these evolved differences may be beneficial for endurance running. Here, we studied mice from generation 68, plus a limited sample from generation 58, to test whether the skeleton continued to evolve after selection limits were reached. Contrary to our expectations, we found few differences between HR and C mice for these later generations, and some of the differences in bone dimensions identified in earlier generations were no longer statistically significant. We hypothesize that the loss of apparently coadapted lower‐level traits reflects (1) deterioration related to a gradual increase in inbreeding and/or (2) additional adaptive changes that replace the functional benefits of some skeletal changes.

     
    more » « less
  3. Abstract

    Bone modeling and remodeling are aerobic processes that entail relatively high oxygen demands. Long bones receive oxygenated blood from nutrient arteries, epiphyseal‐metaphyseal arteries, and periosteal arteries, with the nutrient artery supplying the bulk of total blood volume in mammals (~ 50–70%). Estimates of blood flow into these bones can be made from the dimensions of the nutrient canal, through which nutrient arteries pass. Unfortunately, measuring these canal dimensions non‐invasively (i.e. without physical sectioning) is difficult, and thus researchers have relied on more readily visible skeletal proxies. Specifically, the size of the nutrient artery has been estimated from dimensions (e.g. minimum diameters) of the periosteal (external) opening of the nutrient canal. This approach has also been utilized by some comparative morphologists and paleontologists, as the opening of a nutrient canal is present long after the vascular soft tissue has degenerated. The literature on nutrient arteries and canals is sparse, with most studies consisting of anatomical descriptions from surgical proceedings, and only a few investigating the links between nutrient canal morphology and physiology or behavior. The primary objective of this study was to evaluate femur nutrient canal morphology in mice with known physiological and behavioral differences; specifically, mice from an artificial selection experiment for high voluntary wheel‐running behavior. Mice from four replicate high runner (HR) lines are known to differ from four non‐selected control (C) lines in both locomotor and metabolic activity, withHRmice having increased voluntary wheel‐running behavior and maximal aerobic capacity (VO2max) during forced treadmill exercise. Femora from adult mice (average age 7.5 months) of the 11th generation of this selection experiment were μCT‐scanned and three‐dimensional virtual reconstructions of nutrient canals were measured for minimum cross‐sectional area as a skeletal proxy of blood flow. Gross observations revealed that nutrient canals varied far more in number and shape than prior descriptions would indicate, regardless of sex or genetic background (i.e.HRvs. C lines). Canals adopted non‐linear shapes and paths as they traversed from the periosteal to endosteal borders through the cortex, occasionally even branching within the cortical bone. Additionally, mice from bothHRand C lines averaged more than four nutrient canals per femur, in contrast to the one to two nutrient canals described for femora from rats, pigs, and humans in prior literature. Mice fromHRlines had significantly larger total nutrient canal area than C lines, which was the result not of an increase in the number of nutrient canals, but rather an increase in their average cross‐section size. This study demonstrates that mice with an evolutionary history of increased locomotor activity and maximal aerobic metabolic rate have a concomitant increase in the size of their femoral nutrient canals. Although the primary determinant of nutrient canal size is currently not well understood, the present results bolster use of nutrient canal size as a skeletal indicator of aerobically supported levels of physical activity in comparative studies.

     
    more » « less
  4. Abstract Objectives

    Little is known about how ilium cortical bone responds to loading. Using a mouse model, this study presents data testing the hypothesis that iliac cross‐sectional properties are altered in response to increased activity.

    Materials and Methods

    The sample derives from lines of High Runner (HR) mice bred for increased wheel‐running activity. Four treatment groups of female mice were tested: non‐selected control lines housed without (N = 19) and with wheels (N = 20), and HR mice housed without (N = 17) and with wheels (N = 18) for 13 weeks beginning at weaning. Each pelvis was μCT‐scanned, cross‐sectional properties (cortical area—Ct.Ar, total area—Tt.Ar, polar moment of area, and polar section modulus) were determined from the ilium midshaft, and robusticity indices (ratio of the square root ofCt.ArorTt.Arto caudal ilium length) were calculated. Mixed models were implemented with linetype, wheel access, and presence of the mini‐muscle phenotype as fixed effects, replicate line nested within linetype as a random effect, and body mass as a covariate.

    Results

    Results demonstrate that the mouse ilium morphologically resembles a long bone in cross section. Body mass and the mini‐muscle phenotype were significant predictors of iliac cross‐sectional properties. Wheel access only had a statistically significant effect onCt.Arand its robusticity index, with greater values in mice with wheel access.

    Discussion

    These results suggest that voluntary exercise increases cortical area, but does not otherwise strengthen the ilium in these mice, corroborating previous studies on the effect of increased wheel‐running activity on femoral and humeral cross‐sectional properties in these mice.

     
    more » « less
  5. Abstract

    Replicate lines under uniform selection often evolve in different ways. Previously, analyses using whole-genome sequence data for individual mice (Mus musculus) from 4 replicate High Runner lines and 4 nonselected control lines demonstrated genomic regions that have responded consistently to selection for voluntary wheel-running behavior. Here, we ask whether the High Runner lines have evolved differently from each other, even though they reached selection limits at similar levels. We focus on 1 High Runner line (HR3) that became fixed for a mutation at a gene of major effect (Myh4Minimsc) that, in the homozygous condition, causes a 50% reduction in hindlimb muscle mass and many pleiotropic effects. We excluded HR3 from SNP analyses and identified 19 regions not consistently identified in analyses with all 4 lines. Repeating analyses while dropping each of the other High Runner lines identified 12, 8, and 6 such regions. (Of these 45 regions, 37 were unique.) These results suggest that each High Runner line indeed responded to selection somewhat uniquely, but also that HR3 is the most distinct. We then applied 2 additional analytical approaches when dropping HR3 only (based on haplotypes and nonstatistical tests involving fixation patterns). All 3 approaches identified 7 new regions (as compared with analyses using all 4 High Runner lines) that include genes associated with activity levels, dopamine signaling, hippocampus morphology, heart size, and body size, all of which differ between High Runner and control lines. Our results illustrate how multiple solutions and “private” alleles can obscure general signatures of selection involving “public” alleles.

     
    more » « less