skip to main content


Title: Framework Theory of Conceptual Change to Interpret Undergraduate Engineering Students' Explanations About Mechanics of Materials Concepts: Conceptual Change in Mechanics of Materials
NSF-PAR ID:
10056099
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Engineering Education
Volume:
107
Issue:
1
ISSN:
1069-4730
Page Range / eLocation ID:
113 to 139
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In this work, we describe strategies and provide case-study activities that can be used to examine the properties of superposition, entanglement, tagging, complementarity, and measurement in quantum curricula geared for teacher training. Having a solid foundation in these conceptual ideas is critical for educators who will be adopting quantum ideas within the classroom. Yet they are some of the most difficult concepts to master. We show how one can systematically develop these conceptual foundations with thought experiments on light and with thought experiments that employ the Stern-Gerlach experiment. We emphasize the importance of computer animations in aiding the instruction on these concepts. 
    more » « less
  2. Predictive computational models associated with the mechanics of materials (MOM) offer great potential for enabling large reductions in the cost and time to develop new products and manufacturing procedures. Unfortunately, this potential is currently limited because very rarely are such models adequately and broadly proven to yield trustworthy, accurate, quantitative results for which the level of uncertainty has been quantified. In this regard, the need for rigorous verification and validation (V&V) of these models cannot be overestimated, yet is extremely lacking within the relevant MOM communities. There is thus a strong need to help these communities accelerate the widespread adoption and implementation of such V&V activities. In this vein, concise definitions of verification and validation have been provided by the American Society of Mechanical Engineers (ASME),1 and can be applied here as well: • Verification: The process of determining that a computational model accurately represents the underlying mathematical model and its solution • Validation: The process of determining the degree to which a model is an accurate representation of the real world from the perspective of the intended uses of the model The overarching goal of this workshop and report is thus to help facilitate the widespread and rigorous adoption of V&V by both computational modelers and experimentalists in MOM-related communities. 
    more » « less