skip to main content


Title: Marine Spatial Planning in a Transboundary Context: Linking Baja California with California's Network of Marine Protected Areas
Award ID(s):
1212124
NSF-PAR ID:
10056496
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Frontiers in Marine Science
Volume:
4
ISSN:
2296-7745
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Marine sanctuaries serve as popular destinations for ecotourism, natural resource exploration, and recreation across the US. While often positive, visitation in marine and coastal areas can cause ecological threats to these ecosystems. Increased visitation in marine environments has led to the need for management due to negative ecological and social impacts. Understanding environmental values, attitudes, and perceptions is important to the success of environmental protection. Using online surveys sent via Qualtrics asking questions regarding the users’ knowledge, attitudes, and perceptions of ocean resources, goods and services, this research focused on identifying user profiles and understanding their environmental perception associated with Gray’s Reef National Marine Sanctuary, an offshore marine protected area, and surrounding coastal Georgia. The results show that across multiple types of threats or phenomena, respondents are most concerned about threats to resources related to pollution. Furthermore, they support marine protection and are willing to adjust their consumption habits, such as recycling and energy use, to ensure the sustainable use of ocean resources. The inclusion of insights achieved through research about visitor perceptions into management decision making and planning can positively contribute to the success of environmental protection.

     
    more » « less
  2. Parducci, Laura (Ed.)

    Millennial-scale datasets of heavy metals in biota are difficult to obtain but are important for determining patterns and underlying drivers of toxicant concentrations. This is particularly important to better discriminate contemporary natural and anthropogenic sources. Globally mercury is a contaminant of concern. Post-industrial increases in mercury in arctic biota have been documented and monitoring of Steller sea lions (Eumetopias jubatus) in the Aleutian Islands, Alaska, has revealed a high proportion of pups with fur mercury concentrations above thresholds of concern in some regions. As bone is a tissue that is well preserved in archeological middens, it may prove useful for developing long-term mercury data sets under appropriate conditions. The goal of this study was to evaluate methodologies for measuring mercury concentration in Steller sea lion bone using a direct mercury analyzer, considering sample preparation methods and variability among bone tissue types (e.g., compact versus spongy bone). Finally, we directly compare sensitivity and precision of two different direct mercury analyzer models. Based on the methods presented here, direct mercury analysis using the Nippon MA-3000 can quantify small (ppb) quantities of Hg accurately and precisely in 20 to 60mg of bone with minimal specimen processing. The described method is efficient, relatively inexpensive, and requires minimal bone, conserving rare and valuable specimens. Hydrogen peroxide cleaning and collagen extraction were not required, and may be detrimental for optimal Hg quantification in bone. Further, while homogenization of distinct compact and spongy bone did not impact concentration determination, variance of technical replicates was lower improving quantitation precision. Most importantly, significant differences between compact and spongy bone exist within some individual specimen; however, the difference is not consistent and may indicate differential Hg exposure windows influenced by turnover rate of bone types. We conclude bone provides a natural archive for mercury ecosystem dynamics over millennial time scales in regions where appropriate samples are available. Compact bone has lower and less variable [THg] simplifying analysis and interpretation of data; however, the more dynamic concentrations observed in spongy bone should not be dismissed as invaluable due to their variability in [THg]. Comparisons of [THg] between bone type within individual may provide insight into more acute changes in mercury exposure within an individual’s lifetime.

     
    more » « less