skip to main content


Title: Superstretchable, Self‐Healing Polymeric Elastomers with Tunable Properties
Abstract

Utilization of self‐healing chemistry to develop synthetic polymer materials that can heal themselves with restored mechanical performance and functionality is of great interest. Self‐healable polymer elastomers with tunable mechanical properties are especially attractive for a variety of applications. Herein, a series of urea functionalized poly(dimethyl siloxane)‐based elastomers (U‐PDMS‐Es) are reported with extremely high stretchability, self‐healing mechanical properties, and recoverable gas‐separation performance. Tailoring the molecular weights of poly(dimethyl siloxane) or weight ratio of elastic cross‐linker offers tunable mechanical properties of the obtained U‐PDMS‐Es, such as ultimate elongation (from 984% to 5600%), Young's modulus, ultimate tensile strength, toughness, and elastic recovery. The U‐PDMS‐Es can serve as excellent acoustic and vibration damping materials over a broad range of temperature (over 100 °C). The strain‐dependent elastic recovery behavior of U‐PDMS‐Es is also studied. After mechanical damage, the U‐PDMS‐Es can be healed in 120 min at ambient temperature or in 20 min at 40 °C with completely restored mechanical performance. The U‐PDMS‐Es are also demonstrated to exhibit recoverable gas‐separation functionality with retained permeability/selectivity after being damaged.

 
more » « less
PAR ID:
10056609
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
28
Issue:
22
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The structural design of self-healing materials determines the ultimate performance of the product that can be used in a wide range of applications. Incorporating intrinsic self-healing moieties into puncture-resistant materials could significantly improve the failure resistance and product longevity, since their rapidly rebuilt bonds will provide additional recovery force to resist the external force. Herein, we present a series of tailored urea-modified poly(dimethylsiloxane)-based self-healing polymers (U-PDMS-SPs) that exhibit excellent puncture-resistant properties, fast autonomous self-healing, multi-cycle adhesion capabilities, and well-tunable mechanical properties. Controlling the composition of chemical and physical cross-links enables the U-PDMS-SPs to have an extensibility of 528% and a toughness of 0.6 MJ m −3 . U-PDMS-SPs exhibit fast autonomous self-healability with 25% strain recovery within 2 minutes of healing, and over 90% toughness recovery after 16 hours. We further demonstrate its puncture-resistant properties under the ASTM D5748 standard with an unbreakable feature. Furthermore, the multi-cycle adhesive properties of U-PDMS-SPs are also revealed. High puncture resistance (>327 mJ) and facile adhesion with rapid autonomous self-healability will have a broad impact on the design of adhesives, roofing materials, and many other functional materials with enhanced longevity. 
    more » « less
  2. Abstract

    Polysiloxane elastomers represent a widely utilized soft material with excellent rubber‐like elasticity, biocompatibility, and biodurability; however, there is a lack of an effective and straightforward approach to manipulate the material's viscoelastic response. A facile hydrosilylation reaction is employed to integrate ureidopyrimidinone hydrogen‐bonding side‐groups into linear and crosslinked siloxane polymers to achieve biocompatible soft materials with a highly tunable viscoelastic relaxation timescale. Stacking of H‐bonded moieties is avoided in the designed macromolecular architectures with tight, side‐groups substituents. The obtained siloxane network features the presence of both covalent crosslinks and truly thermoreversible crosslinks, and can be formulated across a broad material design space including elastic solids, recoverable viscoelastic solids, and viscous liquids. The elastomers exhibit unique temperature‐dependent shape‐memory capability and show good cytocompatibility. Importantly, a deformed material's shape‐recovery occurs regardless of external triggering, and through manipulation of network formulations, the shape‐recovery timescale can be easily tuned from seconds to days, opening new possibilities for biomedical, healthcare, and soft material applications.

     
    more » « less
  3. null (Ed.)
    Self-healing triboelectric nanogenerators (SH-TENGs) with fast self-healing, high output performance, and wearing comfort have wide and promising applications in wearable electronic devices. This work presents a high-performance hydrogel-based SH-TENG, which consists of a high dielectric triboelectric layer (HDTL), a self-healing hydrogel electrode layer (SHEL), and a physical cross-linking layer (PCLL). Carbon nanotubes (CNTs), obtained by a chemical vapor deposition (CVD) method, were added into polydimethylsiloxane (PDMS) to produce the HDTL. Compared with pure PDMS, the short-circuit transferred charge (44 nC) and the open circuit voltage (132 V) are doubled for PDMS with 0.01 wt% CNTs. Glycerin, polydopamine particles (PDAP) and graphene were added to poly (vinyl alcohol) (PVA) to prepare the self-healing hydrogel electrode layer. SHEL can physically self-heal in ~1 min when exposed to air. The self-healing efficiency reaches up to 98%. The PCLL is made of poly(methylhydrosiloxane) (PMHS) and PDMS. It forms a good physical bond between the hydrophilic hydrogel and hydrophobic PDMS layers. The electric output performance of the SH-TENG can reach 94% of the undamaged one in 1 min. The SH-TENG (6 × 6 cm2) exhibits good stability and superior electrical performance, enabling it to power 37 LEDs simultaneously. 
    more » « less
  4. Dynamic bonds are a powerful approach to tailor the mechanical properties of elastomers and introduce shape-memory, self-healing, and recyclability. Among the library of dynamic crosslinks, electrostatic interactions among oppositely charged ions have been shown to enable tough and resilient elastomers and hydrogels. In this work, we investigate the mechanical properties of ionically crosslinked ethyl acrylate-based elastomers assembled from oppositely charged copolymers. Using both infrared and Raman spectroscopy, we confirm that ionic interactions are established among polymer chains. We find that the glass transition temperature of the complex is in between the two individual copolymers, while the complex demonstrates higher stiffness and more recovery, indicating that ionic bonds can strengthen and enhance recovery of these elastomers. We compare cycles to increasing strain levels at different strain rates, and hypothesize that at fast strain rates ionic bonds dynamically break and reform while entanglements do not have time to slip, and at slow strain rates ionic interactions are disrupted and these entanglements slip significantly. Further, we show that a higher ionic to neutral monomer ratio can increase the stiffness, but its effect on recovery is minimal. Finally, taking advantage of the versatility of acrylates, ethyl acrylate is replaced with the more hydrophilic 2-hydroxyethyl acrylate, and the latter is shown to exhibit better recovery and self-healing at a cost of stiffness and strength. The design principles uncovered for these easy-to-manufacture polyelectrolyte complex-inspired bulk materials can be broadly applied to tailor elastomer stiffness, strength, inelastic recovery, and self-healing for various applications. 
    more » « less
  5. Self-healing polymers often have a trade-off between healing efficiency and mechanical stiffness. Stiff polymers that sacrifice their chain mobility are slow to repair upon mechanical failure. We herein report adaptable polymer films with dynamically moisture-controlled mechanical and optical properties, therefore having tunable self-healing efficiency. The design of the polymer film is based on the coordination of europium (Eu) with dipicolylamine (DPA)-containing random copolymers of poly( n -butyl acrylate- co -2-hydroxy-3-dipicolylamino methacrylate) (P( n BA- co -GMADPA)). The Eu–DPA complexation results in the formation of mechanically robust polymer films. The coordination of Eu–DPA has proven to be moisture-switchable given the preferential coordination of lanthanide metals to O over N, using nuclear magnetic resonance and fluorescence spectroscopy. Water competing with DPA to bind Eu 3+ ions can weaken the cross-linking networks formed by Eu–DPA coordination, leading to the increase of chain mobility. The in situ dynamic mechanical analysis and ex situ rheological studies confirm that the viscofluid and the elastic solid states of Eu-polymers are switchable by moisture. Water speeds up the self-healing of the polymer film by roughly 100 times; while it can be removed after healing to recover the original mechanical stiffness of polymers. 
    more » « less