Abstract The Materials Genome Initiative (MGI) has streamlined the materials discovery effort by leveraging generic traits of materials, with focus largely on perfect solids. Defects such as impurities and perturbations, however, drive many attractive functional properties of materials. The rich tapestry of charge, spin, and bonding states hosted by defects are not accessible to elements and perfect crystals, and defects can thus be viewed as another class of “elements” that lie beyond the periodic table. Accordingly, a Defect Genome Initiative (DGI) to accelerate functional defect discovery for energy, quantum information, and other applications is proposed. First, major advances made under the MGI are highlighted, followed by a delineation of pathways for accelerating the discovery and design of functional defects under the DGI. Near‐term goals for the DGI are suggested. The construction of open defect platforms and design of data‐driven functional defects, along with approaches for fabrication and characterization of defects, are discussed. The associated challenges and opportunities are considered and recent advances towards controlled introduction of functional defects at the atomic scale are reviewed. It is hoped this perspective will spur a community‐wide interest in undertaking a DGI effort in recognition of the importance of defects in enabling unique functionalities in materials.
more »
« less
New facets for the role of defects in ceramics
Armed with advances in our ability to synthesize, characterize, and model materials, it may be time to redefine the negative connotation surrounding defects in ceramic materials. But can defects really shine as the “good guys” in materials science?
more »
« less
- Award ID(s):
- 1708615
- PAR ID:
- 10056847
- Date Published:
- Journal Name:
- American Ceramic Society bulletin
- Volume:
- 97
- ISSN:
- 0002-7812
- Page Range / eLocation ID:
- 16-23
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract Optically active point defects in wide-bandgap crystals are leading building blocks for quantum information technologies including quantum processors, repeaters, simulators, and sensors. Although defects and impurities are ubiquitous in all materials, select defect configurations in certain materials harbor coherent electronic and nuclear quantum states that can be optically and electronically addressed in solid-state devices, in some cases even at room temperature. Historically, the study of quantum point defects has been limited to a relatively small set of host materials and defect systems. In this article, we consider the potential for identifying defects in new materials, either to advance known applications in quantum science or to enable entirely new capabilities. We propose that, in principle, it should be possible to reverse the historical approach, which is partially based on accidental discovery, in order to design quantum defects with desired properties suitable for specific applications. We discuss the biggest obstacles on the road towards this goal, in particular those related to theoretical prediction, materials growth and processing, and experimental characterization.more » « less
-
Topological defects play a central role in the physics of many materials, including magnets, superconductors, and liquid crystals. In active fluids, defects become autonomous particles that spontaneously propel from internal active stresses and drive chaotic flows stirring the fluid. The intimate connection between defect textures and active flow suggests that properties of active materials can be engineered by controlling defects, but design principles for their spatiotemporal control remain elusive. Here, we propose a symmetry-based additive strategy for using elementary activity patterns, as active topological tweezers, to create, move, and braid such defects. By combining theory and simulations, we demonstrate how, at the collective level, spatial activity gradients act like electric fields which, when strong enough, induce an inverted topological polarization of defects, akin to a negative susceptibility dielectric. We harness this feature in a dynamic setting to collectively pattern and transport interacting active defects. Our work establishes an additive framework to sculpt flows and manipulate active defects in both space and time, paving the way to design programmable active and living materials for transport, memory, and logic.more » « less
-
Quantum defects are atomic defects in materials that provide resources to construct quantum information devices such as single-photon emitters and spin qubits. Recently, two-dimensional (2D) materials gained prominence as a host of quantum defects with many attractive features derived from their atomically thin and layered material formfactor. In this Perspective, we discuss first-principles computational methods and challenges to predict the spin and electronic properties of quantum defects in 2D materials. We focus on the open quantum system nature of the defects and their interaction with external parameters such as electric field, magnetic field, and lattice strain. We also discuss how such prediction and understanding can be used to guide experimental studies, ranging from defect identification to tuning of their spin and optical properties. This Perspective provides significant insights into the interplay between the defect, the host material, and the environment, which will be essential in the pursuit of ideal two-dimensional quantum defect platforms.more » « less
-
Abstract Crystallographic defects exist in many redox active energy materials, e.g., battery and catalyst materials, which significantly alter their chemical properties for energy storage and conversion. However, there is lack of quantitative understanding of the interrelationship between crystallographic defects and redox reactions. Herein, crystallographic defects, such as geometrically necessary dislocations, are reported to influence the redox reactions in battery particles through single‐particle, multimodal, and in situ synchrotron measurements. Through Laue X‐ray microdiffraction, many crystallographic defects are spatially identified and statistically quantified from a large quantity of diffraction patterns in many layered oxide particles, including geometrically necessary dislocations, tilt boundaries, and mixed defects. The in situ and ex situ measurements, combining microdiffraction and X‐ray spectroscopy imaging, reveal that LiCoO2particles with a higher concentration of geometrically necessary dislocations provide deeper charging reactions, indicating that dislocations may facilitate redox reactions in layered oxides during initial charging. The present study illustrates that a precise control of crystallographic defects and their distribution can potentially promote and homogenize redox reactions in battery materials.more » « less
An official website of the United States government

