skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Hypothesis for the Composition of the Tardigrade Brain and its Implications for Panarthropod Brain Evolution
Award ID(s):
1557432
PAR ID:
10057188
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Integrative and Comparative Biology
Volume:
57
Issue:
3
ISSN:
1540-7063
Page Range / eLocation ID:
546 to 559
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Luo, Qingming; Ding, Jun; Fu, Ling (Ed.)
  2. Intracortical brain computer interfaces (iBCIs) utilizing extracellular recordings mainly employ in vivo signal processing application-specific integrated circuits (ASICs) to detect action potentials (spikes). Conventionally, “brain-switches” based on spiking activity have been employed to realize asynchronous (self-paced) iBCIs, estimating when the user involves in the underlying BCI task. Several studies have demonstrated that local field potentials (LFPs) can effectively replace action potentials, drastically reducing the power consumption and processing requirements of in vivo ASICs. This article presents the first LFP-based brain-switch design and implementation using gated recurrent neural networks (RNNs). Compared to the previously reported brain-switches, our design requires no exhaustive learning phase for the estimation of optimal recording channels or frequency band selection, making it more applicable to practical asynchronous iBCIs. The synthesized ASIC of the designed in vivo LFP-based feature extraction unit, in a standard 180-nm CMOS process, occupies only 0.09 mm^2 of silicon area, and the post place-and-route synthesis results indicate that it consumes 91.87 nW of power while operating at 2 kHz. Compared to the previously published ASICs, the proposed LFP-based brain-switch consumes the least power for in vivo digital signal processing and achieves comparable state estimation performance to that of spike-based brain-switches. 
    more » « less