skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Truss-based Community Search: a Truss-equivalence Based Indexing Approach
We consider the community search problem defined upon a large graph G: given a query vertex q in G, to find as output all the densely connected subgraphs of G, each of which contains the query v. As an online, query-dependent variant of the well-known community detection problem, community search enables personalized community discovery that has found widely varying applications in real-world, large-scale graphs. In this paper, we study the community search problem in the truss-based model aimed at discovering all dense and cohesive k-truss communities to which the query vertex q belongs. We introduce a novel equivalence relation, k-truss equivalence, to model the intrinsic density and cohesiveness of edges in k-truss communities. Consequently, all the edges of G can be partitioned to a series of k-truss equivalence classes that constitute a space-efficient, truss-preserving index structure, EquiTruss. Community search can be henceforth addressed directly upon EquiTruss without repeated, time-demanding accesses to the original graph, G, which proves to be theoretically optimal. In addition, EquiTruss can be efficiently updated in a dynamic fashion when G evolves with edge insertion and deletion. Experimental studies in real-world, large-scale graphs validate the efficiency and effectiveness of EquiTruss, which has achieved at least an order of magnitude speedup in community search over the state-of-the-art method, TCP-Index.  more » « less
Award ID(s):
1743142
PAR ID:
10057533
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the VLDB Endowment
Volume:
10
Issue:
11
ISSN:
2150-8097
Page Range / eLocation ID:
1298-1309
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The K-Truss of a graph is a cohesive subgraph that has been widely used for community detection in applications such as social networks and security analysis. In this paper, we first propose one optimized triangle search kernel with a few operations that can be used in both triangle counting and triangle search to replace the existing list intersection method. Based on the optimized kernel, three truss analytics algorithms, an optimized K-Truss parallel algorithm, a maximal K-Truss parallel algorithm, and a Truss decomposition parallel algorithm, are developed to efficiently enable different kinds of graph analysis. Moreover, all proposed parallel algorithms have been implemented in the highly-productive parallel language Chapel and integrated into the open-source framework Arkouda. Experimental results compared with the existing list intersection-based method show that for both synthetic and real-world graphs, the proposed method can significantly improve the performance of truss analysis on large graphs. The implemented method is publicly available from GitHub. 
    more » « less
  2. In graph analytics, a truss is a cohesive subgraph based on the number of triangles supporting each edge. It is widely used for community detection applications such as social networks and security analysis, and the performance of truss analytics highly depends on its triangle counting method. This paper proposes a novel triangle counting kernel named Minimum Search (MS). Minimum Search can select two smaller adjacency lists out of three and uses fine-grained parallelism to improve the performance of triangle counting. Then, two basic algorithms, MS-based triangle counting, and MS-based support updating are developed. Based on the novel triangle counting kernel and the two basic algorithms above, three fundamental parallel truss analytics algorithms are designed and implemented to enable different kinds of graph truss analysis. These truss algorithms include an optimized K-Truss algorithm, a Max-Truss algorithm, and a Truss Decomposition algorithm. Moreover, all proposed algorithms have been implemented in the parallel language Chapel and integrated into an open-source framework, Arkouda. Through Arkouda, data scientists can efficiently conduct graph analysis through an easy-to-use Python interface and handle large-scale graph data in powerful back-end computing resources. Experimental results show that the proposed methods can significantly improve the performance of truss analysis on real-world graphs compared with the existing and widely adopted list intersection-based method. The implemented code is publicly available from GitHub (https://github.com/Bears-R-Us/arkoudanjit). } 
    more » « less
  3. Subgraph matching query is to find out the subgraphs of data graph G which match a given query graph Q. Traditional methods can not deal with big data graphs due to their high computational complex. In this paper, we propose a distributed top-k subgraph search method over big graphs. The proposed method is designed at the level of single vertex and all vertices obtain their matching state separately without requiring global graph information. Therefore, it can be easily deployed in distributed platform like Hadoop. The evaluations of running time, number of messages and supersteps show the efficiency and scalability of the proposed method. 
    more » « less
  4. Subgraph matching query is to find out the subgraphs of data graph G which match a given query graph Q. Traditional methods can not deal with big data graphs due to their high computational complex. In this paper, we propose a distributed top-k subgraph search method over big graphs. The proposed method is designed at the level of single vertex and all vertices obtain their matching state separately without requiring global graph information. Therefore, it can be easily deployed in distributed platform like Hadoop. The evaluations of running time, number of messages and supersteps show the efficiency and scalability of the proposed method. 
    more » « less
  5. We consider in this paper the similarity search problem that retrieves relevant graphs from a graph database under the well-known graph edit distance (GED) constraint. Formally, given a graph database G = {g1, g2, . . . , gn} and a query graph q, we aim to search the graph gi ∈ g such that the graph edit distance between gi and q, GED(gi, q), is within a user-specified GED threshold, τ. In spite of its theoretical significance and wide applicability, the GED-based similarity search problem is challenging in large graph databases due in particular to a large amount of GED computation incurred, which has proven to be NP-hard. In this paper, we propose a parameterized, partition-based GED lower bound that can be instantiated into a series of tight lower bounds towards synergistically pruning false-positive graphs from before costly GED computation is performed. We design an efficient, selectivity-aware algorithm to partition graphs of into highly selective subgraphs. They are further incorporated in a cost-effective, multi-layered indexing structure, ML-Index (Multi-Layered Index), for GED lower bound cross-checking and false-positive graph filtering with theoretical performance guarantees. Experimental studies in real and synthetic graph databases validate the efficiency and effectiveness of ML-Index, which achieves up to an order of magnitude speedup over the state-of-the-art method for similarity search in graph databases. 
    more » « less