Background: Relationships between bio-entities (genes, proteins, diseases, etc.) constitute a significant part of our knowledge. Most of this information is documented as unstructured text in different forms, such as books, articles and on-line pages. Automatic extraction of such information and storing it in structured form could help researchers more easily access such information and also make it possible to incorporate it in advanced integrative analysis. In this study, we developed a novel approach to extract bio-entity relationships information using Nature Language Processing (NLP) and a graph-theoretic algorithm. Methods: Our method, called GRGT (Grammatical Relationship Graph for Triplets), not only extracts the pairs of terms that have certain relationships, but also extracts the type of relationship (the word describing the relationships). In addition, the directionality of the relationship can also be extracted. Our method is based on the assumption that a triplet exists for a pair of interactions. A triplet is defined as two terms (entities) and an interaction word describing the relationship of the two terms in a sentence. We first use a sentence parsing tool to obtain the sentence structure represented as a dependency graph where words are nodes and edges are typed dependencies. The shortest paths among the pairs of words in the triplet are then extracted, which form the basis for our information extraction method. Flexible pattern matching scheme was then used to match a triplet graph with unknown relationship to those triplet graphs with labels (True or False) in the database. Results: We applied the method on three benchmark datasets to extract the protein-protein-interactions (PPIs), and obtained better precision than the top performing methods in literature. Conclusions: We have developed a method to extract the protein-protein interactions from biomedical literature. PPIs extracted by our method have higher precision among other methods, suggesting that our method can be used to effectively extract PPIs and deposit them into databases. Beyond extracting PPIs, our method could be easily extended to extracting relationship information between other bio-entities.
more »
« less
Extraction of protein-protein interactions using natural language processing based pattern matching
A significant part of our knowledge is relationships between two terms. However, most of these information is documented as unstructured text in various forms, like books, online articles and webpages. Extract those information and store them in a structured database could help people utilize these information more conveniently. In this study, we proposed a novel approach to extract the relationships information based on Nature Language Processing (NLP) and graph theoretic algorithm. Our method, Grammatical Relationship Graph for Triplets (GRGT), extracts three layers of information: the pairs of terms that have certain relationship, exactly what type of the relationship is, and what direct this relationship is. GRGT works on a grammatical graph obtained by parsed the sentence using Natural Language Processing. Patterns were extracted from the graph by shortest path among the words of interests. We have designed a decision tree to make the pattern matching. GRGT was applied to extract the protein-protein-interactions (PPIs) from biomedical literature, and obtained better precision than the best performing method in literature. Beyond extracting PPIs, our method could be easily extended to extracting relationship information between other bioentities.
more »
« less
- Award ID(s):
- 1743142
- PAR ID:
- 10057535
- Date Published:
- Journal Name:
- 2017 IEEE International Conference on Bioinformatics and Biomedicine
- Page Range / eLocation ID:
- 1292-1295
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The COVID-19 pandemic caused by SARS-CoV-2 has emphasized the importance of studying virus-host protein-protein interactions (PPIs) and drug-target interactions (DTIs) to discover effective antiviral drugs. While several computational algorithms have been developed for this purpose, most of them overlook the interplay pathways during infection along PPIs and DTIs. In this paper, we present a novel multipartite graph learning approach to uncover hidden binding affinities in PPIs and DTIs. Our method leverages a comprehensive biomolecular mechanism network that integrates protein-protein, genetic, and virus-host interactions, enabling us to learn a new graph that accurately captures the underlying connected components. Notably, our method identifies clustering structures directly from the new graph, eliminating the need for post-processing steps. To mitigate the detrimental effects of noisy or outlier data in sparse networks, we propose a robust objective function that incorporates the L2,p-norm and a constraint based on the pth-order Ky-Fan norm applied to the graph Laplacian matrix. Additionally, we present an efficient optimization method tailored to our framework. Experimental results demonstrate the superiority of our approach over existing state-of-the-art techniques, as it successfully identifies potential repurposable drugs for SARS-CoV-2, offering promising therapeutic options for COVID-19 treatment.more » « less
-
Abstract MotivationAs fewer than 1% of proteins have protein function information determined experimentally, computationally predicting the function of proteins is critical for obtaining functional information for most proteins and has been a major challenge in protein bioinformatics. Despite the significant progress made in protein function prediction by the community in the last decade, the general accuracy of protein function prediction is still not high, particularly for rare function terms associated with few proteins in the protein function annotation database such as the UniProt. ResultsWe introduce TransFew, a new transformer model, to learn the representations of both protein sequences and function labels [Gene Ontology (GO) terms] to predict the function of proteins. TransFew leverages a large pre-trained protein language model (ESM2-t48) to learn function-relevant representations of proteins from raw protein sequences and uses a biological natural language model (BioBert) and a graph convolutional neural network-based autoencoder to generate semantic representations of GO terms from their textual definition and hierarchical relationships, which are combined together to predict protein function via the cross-attention. Integrating the protein sequence and label representations not only enhances overall function prediction accuracy, but delivers a robust performance of predicting rare function terms with limited annotations by facilitating annotation transfer between GO terms. Availability and implementationhttps://github.com/BioinfoMachineLearning/TransFew.more » « less
-
Kinases are enzymes that mediate phosphate transfer. Extracting information on kinases from biomedical literature is an important task which has direct implications for applications such as drug design. In this work, we develop KinDER, Kinase Document Extractor and Ranker, a biomedical natural language processing tool for extracting functional and disease related information on kinases. This tool combines information retrieval and machine learning techniques to automatically extract information about protein kinases. First, it uses several bio-ontologies to retrieve documents related to kinases and then uses a supervised classification model to rank them according to their relevance. This was developed to participate in the Text-mining services for Human Kinome Curation Track of the BioCreative VI challenge. According to the official BioCreative evaluation results, KinDER provides stateof- the-art performance for extracting functional information on kinases from abstracts.more » « less
-
<bold>Abstract</bold> Deciphering the relationship between a gene and its genomic context is fundamental to understanding and engineering biological systems. Machine learning has shown promise in learning latent relationships underlying the sequence-structure-function paradigm from massive protein sequence datasets. However, to date, limited attempts have been made in extending this continuum to include higher order genomic context information. Evolutionary processes dictate the specificity of genomic contexts in which a gene is found across phylogenetic distances, and these emergent genomic patterns can be leveraged to uncover functional relationships between gene products. Here, we train a genomic language model (gLM) on millions of metagenomic scaffolds to learn the latent functional and regulatory relationships between genes. gLM learns contextualized protein embeddings that capture the genomic context as well as the protein sequence itself, and encode biologically meaningful and functionally relevant information (e.g. enzymatic function, taxonomy). Our analysis of the attention patterns demonstrates that gLM is learning co-regulated functional modules (i.e. operons). Our findings illustrate that gLM’s unsupervised deep learning of the metagenomic corpus is an effective and promising approach to encode functional semantics and regulatory syntax of genes in their genomic contexts and uncover complex relationships between genes in a genomic region.more » « less