skip to main content


Title: Heterogeneous Technology Configurable Fabrics for Field-Programmable Co-Design of CMOS and Spin-Based Devices
he architecture, operation, and characteristics of two post-CMOS reconfigurable fabrics are identified to realize energy-sparing and resilience features, while remaining feasible for near-term fabrication. First, Storage Cell Replacement Fabrics (SCRFs) provide a reconfigurable computing platform utilizing near-zero leakage Spin Hall Effect devices which replace SRAM bit-cells within Look-Up Tables (LUTs) and/or switch boxes to complement the advantages of MOS transistor-based multiplexer select trees. Second, Heterogeneous Technology Configurable Fabrics (HTCFs) are identified to extend reconfigurable computing platforms via a palette of CMOS, spin-based, or other emerging device technologies, such as various Magnetic Tunnel Junction (MTJ) and Domain Wall Motion devices. HTCFs are composed of a triad of Emerging Device Blocks, CMOS Logic Blocks, and Signal Conversion Blocks. This facilitates a novel architectural approach to reduce leakage energy, minimize communication occurrence and energy cost by eliminating unnecessary data transfer, and support auto-tuning for resilience. Furthermore, HTCFs enable new advantages of technology co-design which trades off alternative mappings between emerging devices and transistors at runtime by allowing dynamic remapping to adaptively leverage the intrinsic computing features of each device technology. SPICE simulations indicate 6% to 67% reduction in read energy, 21% reduction in reconfiguration energy, and 78% higher clock frequency versus alternative fabricated emerging device architectures, and a significant reduction in leakage compared to CMOS-based approaches.  more » « less
Award ID(s):
1739635
NSF-PAR ID:
10057854
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE International Conference on Rebooting Computing
Page Range / eLocation ID:
1 to 4
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The HSC-FPGA offers an intriguing feasible architecture for the next generation of configurable fabrics, which allows embracing the advantages of both CMOS and beyond-CMOS technologies without requiring significant modification to the routing structure, programming paradigms, and synthesis tool-chain of the commercial FPGAs. In the HSC-FPGA, the intrinsic characteristics of magnetic random access memory (MRAM)-look-up table (LUT) circuits are used to implement sequential logic, while combinational logic circuits are implemented by static random access memory (SRAM)-LUTs. Fabric-level simulation results for the developed HSC-FPGA show that it can achieve at least 18%, 70%, and 15% reduction in terms of area, standby power, and read power consumption, respectively, for various ISCAS-89 and ITC-99 benchmark circuits compared to conventional SRAM-based FPGAs. The power consumption values can be further decreased by the power-gating allowed by the non-volatility feature of MRAM-LUTs. Moreover, the benefits of increased heterogeneity for reconfigurable computing is extended along realizing probabilistic computing paradigms within a fabric, which is enabled by probabilistic spin logic devices. The cooperating strengths of technology-heterogeneity and heterogeneity in computing paradigm in the proposed HSC-FPGA are leveraged to develop energy-efficient and reliability-aware training and evaluation circuits for deep belief networks with memristive crossbar arrays and p-bit based probabilistic neurons. 
    more » « less
  2. By mimicking biomimetic synaptic processes, the success of artificial intelligence (AI) has been astounding with various applications such as driving automation, big data analysis, and natural-language processing.[1-4] Due to a large quantity of data transmission between the separated memory unit and the logic unit, the classical computing system with von Neumann architecture consumes excessive energy and has a significant processing delay.[5] Furthermore, the speed difference between the two units also causes extra delay, which is referred to as the memory wall.[6, 7] To keep pace with the rapid growth of AI applications, enhanced hardware systems that particularly feature an energy-efficient and high-speed hardware system need to be secured. The novel neuromorphic computing system, an in-memory architecture with low power consumption, has been suggested as an alternative to the conventional system. Memristors with analog-type resistive switching behavior are a promising candidate for implementing the neuromorphic computing system since the devices can modulate the conductance with cycles that act as synaptic weights to process input signals and store information.[8, 9]

    The memristor has sparked tremendous interest due to its simple two-terminal structure, including top electrode (TE), bottom electrode (BE), and an intermediate resistive switching (RS) layer. Many oxide materials, including HfO2, Ta2O5, and IGZO, have extensively been studied as an RS layer of memristors. Silicon dioxide (SiO2) features 3D structural conformity with the conventional CMOS technology and high wafer-scale homogeneity, which has benefited modern microelectronic devices as dielectric and/or passivation layers. Therefore, the use of SiO2as a memristor RS layer for neuromorphic computing is expected to be compatible with current Si technology with minimal processing and material-related complexities.

    In this work, we proposed SiO2-based memristor and investigated switching behaviors metallized with different reduction potentials by applying pure Cu and Ag, and their alloys with varied ratios. Heavily doped p-type silicon was chosen as BE in order to exclude any effects of the BE ions on the memristor performance. We previously reported that the selection of TE is crucial for achieving a high memory window and stable switching performance. According to the study which compares the roles of Cu (switching stabilizer) and Ag (large switching window performer) TEs for oxide memristors, we have selected the TE materials and their alloys to engineer the SiO2-based memristor characteristics. The Ag TE leads to a larger memory window of the SiO2memristor, but the device shows relatively large variation and less reliability. On the other hand, the Cu TE device presents uniform gradual switching behavior which is in line with our previous report that Cu can be served as a stabilizer, but with small on/off ratio.[9] These distinct performances with Cu and Ag metallization leads us to utilize a Cu/Ag alloy as the TE. Various compositions of Cu/Ag were examined for the optimization of the memristor TEs. With a Cu/Ag alloying TE with optimized ratio, our SiO2based memristor demonstrates uniform switching behavior and memory window for analog switching applications. Also, it shows ideal potentiation and depression synaptic behavior under the positive/negative spikes (pulse train).

    In conclusion, the SiO2memristors with different metallization were established. To tune the property of RS layer, the sputtering conditions of RS were varied. To investigate the influence of TE selections on switching performance of memristor, we integrated Cu, Ag and Cu/Ag alloy as TEs and compared the switch characteristics. Our encouraging results clearly demonstrate that SiO2with Cu/Ag is a promising memristor device with synaptic switching behavior in neuromorphic computing applications.

    Acknowledgement

    This work was supported by the U.S. National Science Foundation (NSF) Award No. ECCS-1931088. S.L. and H.W.S. acknowledge the support from the Improvement of Measurement Standards and Technology for Mechanical Metrology (Grant No. 22011044) by KRISS.

    References

    [1] Younget al.,IEEE Computational Intelligence Magazine,vol. 13, no. 3, pp. 55-75, 2018.

    [2] Hadsellet al.,Journal of Field Robotics,vol. 26, no. 2, pp. 120-144, 2009.

    [3] Najafabadiet al.,Journal of Big Data,vol. 2, no. 1, p. 1, 2015.

    [4] Zhaoet al.,Applied Physics Reviews,vol. 7, no. 1, 2020.

    [5] Zidanet al.,Nature Electronics,vol. 1, no. 1, pp. 22-29, 2018.

    [6] Wulfet al.,SIGARCH Comput. Archit. News,vol. 23, no. 1, pp. 20–24, 1995.

    [7] Wilkes,SIGARCH Comput. Archit. News,vol. 23, no. 4, pp. 4–6, 1995.

    [8] Ielminiet al.,Nature Electronics,vol. 1, no. 6, pp. 333-343, 2018.

    [9] Changet al.,Nano Letters,vol. 10, no. 4, pp. 1297-1301, 2010.

    [10] Qinet al., Physica Status Solidi (RRL) - Rapid Research Letters, pssr.202200075R1, In press, 2022.

     
    more » « less
  3. Abstract

    As the energy and hardware investments necessary for conventional high‐precision digital computing continue to explode in the era of artificial intelligence (AI), a change in paradigm that can trade precision for energy and resource efficiency is being sought for many computing applications. Stochastic computing (SC) is an attractive alternative since, unlike digital computers, which require many logic gates and a high transistor volume to perform basic arithmetic operations such as addition, subtraction, multiplication, sorting, etc., SC can implement the same using simple logic gates. While it is possible to accelerate SC using traditional silicon complementary metal–oxide–semiconductor (CMOS) technology, the need for extensive hardware investment to generate stochastic bits (s‐bits), the fundamental computing primitive for SC, makes it less attractive. Memristor and spin‐based devices offer natural randomness but depend on hybrid designs involving CMOS peripherals for accelerating SC, which increases area and energy burden. Here, the limitations of existing and emerging technologies are overcome, and a standalone SC architecture embedded in memory and based on 2D memtransistors is experimentally demonstrated. The monolithic and non‐von‐Neumann SC architecture occupies a small hardware footprint and consumes a miniscule amount of energy (<1 nJ) for both s‐bit generation and arithmetic operations, highlighting the benefits of SC.

     
    more » « less
  4. Protecting intellectual property (IP) has become a serious challenge for chip designers. Most countermeasures are tailored for CMOS integration and tend to incur excessive overheads, resulting from additional circuitry or device-level modifications. On the other hand, power density is a critical concern for sub-50 nm nodes, necessitating alternate design concepts. Although initially tailored for error-tolerant applications, imprecise computing has gained traction as a general-purpose design technique. Emerging devices are currently being explored to implement ultra-low-power circuits for inexact computing applications. In this paper, we quantify the security threats of imprecise computing using emerging devices. More specifically, we leverage the innate polymorphism and tunable stochastic behavior of spin-orbit torque (SOT) devices, particularly, the giant spin-Hall effect (GSHE) switch. We enable IP protection (by means of logic locking and camouflaging) simultaneously for deterministic and probabilistic computing, directly at the GSHE device level. We conduct a comprehensive security analysis using state-of-the-art Boolean satisfiability (SAT) attacks; this study demonstrates the superior resilience of our GSHE primitive when tailored for deterministic computing. We also demonstrate how probabilistic computing can thwart most, if not all, existing SAT attacks. Based on this finding, we propose an attack scheme called probabilistic SAT (PSAT) which can bypass the defense offered by logic locking and camouflaging for imprecise computing schemes. Further, we illustrate how careful application of our GSHE primitive can remain secure even on the application of the PSAT attack. Finally, we also discuss side-channel attacks and invasive monitoring, which are arguably even more concerning threats than SAT attacks. 
    more » « less
  5. Promising for digital signal processing applications, approximate computing has been extensively considered to tradeoff limited accuracy for improvements in other circuit metrics such as area, power, and performance. In this paper, approximate arithmetic circuits are proposed by using emerging nanoscale spintronic devices. Leveraging the intrinsic current-mode thresholding operation of spintronic devices, we initially present a hybrid spin-CMOS majority gate design based on a composite spintronic device structure consisting of a magnetic domain wall motion stripe and a magnetic tunnel junction. We further propose a compact and energy-efficient accuracy-configurable adder design based on the majority gate. Unlike most previous approximate circuit designs that hardwire a constant degree of approximation, this design is adaptive to the inherent resilience in various applications to different degrees of accuracy. Subsequently, we propose two new approximate compressors for utilization in fast multiplier designs. The device-circuit SPICE simulation shows 34.58% and 66% improvement in power consumption, respectively, for the accurate and approximate modes of the accuracy-configurable adder, compared to the recently reported domain wall motion-based full adder design. In addition, the proposed accuracy-configurable adder and approximate compressors can be efficiently utilized in the discrete cosine transform (DCT) as a widely-used digital image processing algorithm. The results indicate that the DCT and inverse DCT (IDCT) using the approximate multiplier achieve ~2x energy saving and 3x speed-up compared to an exactly-designed circuit, while achieving comparable quality in its output result. 
    more » « less