skip to main content

Title: Sensitivity of Homogeneous Ice Nucleation to Aerosol Perturbations and Its Implications for Aerosol Indirect Effects Through Cirrus Clouds
Award ID(s):
1642289 2001903
Publication Date:
Journal Name:
Geophysical Research Letters
Page Range or eLocation-ID:
1684 to 1691
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. The aerosol indirect effect on cloud microphysical and radiative propertiesis one of the largest uncertainties in climate simulations. In order toinvestigate the aerosol–cloud interactions, a total of 16 low-level stratuscloud cases under daytime coupled boundary-layer conditions are selectedover the southern Great Plains (SGP) region of the United States. Thephysicochemical properties of aerosols and their impacts on cloudmicrophysical properties are examined using data collected from theDepartment of Energy Atmospheric Radiation Measurement (ARM) facility at the SGP site. The aerosol–cloud interaction index (ACIr) is used to quantify the aerosol impacts with respect to cloud-droplet effective radius. The mean value of ACIrmore »calculated from all selected samples is0.145±0.05 and ranges from 0.09 to 0.24 at a range of cloudliquid water paths (LWPs; LWP=20–300 g m−2). The magnitude of ACIr decreases with an increasing LWP, which suggests a diminished cloud microphysical response to aerosol loading, presumably due to enhanced condensational growth processes and enlarged particle sizes. The impact of aerosols with different light-absorbing abilities on the sensitivity of cloud microphysical responses is also investigated. In the presence of weak light-absorbing aerosols, the low-level clouds feature a higher number concentration of cloud condensation nuclei (NCCN) and smaller effective radii (re), while the opposite is true for strong light-absorbing aerosols. Furthermore, the mean activation ratio of aerosols to CCN (NCCN∕Na) for weakly (strongly) absorbing aerosols is 0.54 (0.45), owing to the aerosol microphysical effects, particularly the different aerosol compositions inferred by their absorptive properties. In terms of the sensitivity of cloud-droplet number concentration (Nd) to NCCN, the fraction of CCN that converted to cloud droplets (Nd∕NCCN) for the weakly (strongly) absorptive regime is 0.69 (0.54). The measured ACIr values in the weakly absorptive regime arerelatively higher, indicating that clouds have greater microphysicalresponses to aerosols, owing to the favorable thermodynamic condition. Thereduced ACIr values in the strongly absorptive regime are due to the cloud-layer heating effect induced by strong light-absorbing aerosols. Consequently, we expect larger shortwave radiative cooling effects from clouds in the weakly absorptive regime than those in the strongly absorptive regime.« less