skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Climate Change in the Lumbee River Watershed and Potential Impacts on the Lumbee Tribe of North Carolina
A growing body of research focuses on climate change and Indigenous peoples. However, relatively little of this work focuses on Native American tribes living in the Atlantic Coastal Plain of the United States. The Lumbee Tribe of North Carolina is a large (60,000 member) Native American tribe located on the Coastal Plain in present day North Carolina (U.S.). The tribe has deep connections to the Lumbee River, which flows through a watershed dominated by extensive forested wetlands. In this paper, I outline key issues associated with climate change and water in the region, and I use long‐term climatic and hydrologic datasets and analysis to establish context for understanding historical climate change in the Lumbee River watershed. Downscaled climate model outputs for the region show how further changes may affect the hydrologic balance of the watershed. I discuss these changes in terms of environmental degradation and potential impacts on Lumbee culture and persistence, which has remained strong through centuries of adversity and has also experienced a resurgence in recent years. I close by acknowledging the especially vulnerable position of the Lumbee Tribe as a non‐federal tribe that lacks access to certain resources, statutory protections, and policies aimed at helping Native American tribes deal with climate change and other environmental challenges.  more » « less
Award ID(s):
1712176 1747709
PAR ID:
10058153
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of contemporary water research and education
Volume:
163
Issue:
1
ISSN:
1936-704X
Page Range / eLocation ID:
79-93
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In Arctic landscapes, watershed processes are tightly linked to cold temperatures, permafrost, snow, and strong seasonality in precipitation, storage, and runoff. Thus, a rapidly changing Arctic climate will affect watershed function and result in changes to the transport of water, sediment, and nutrients to downstream aquatic and marine ecosystems. There is increasing evidence of hydrologic intensification of the Arctic terrestrial water cycle, fueling inquiry into the hydrologic responses that integrate the varying climate and landscape units. Key to understanding these complex watershed processes is long-term hydrologic monitoring in Arctic Alaska. The goal of this study is to operate and maintain hydroclimate observation stations in the Kuparuk River basin to obtain continuous datasets for the community of Arctic stakeholders. Imnavait Creek is a small (2.2 square kilometers) watershed located in the northern foothills region of Brooks Range and the headwaters of the Kuparuk River. The Kuparuk River flows north through the foothills and coastal plain of Alaska, before discharging into the Beaufort Sea. The gauging station at Imnavait Creek is approximately 3 kilometers south of the Dalton Highway, near MP (milepost) 291. Imnavait Creek parallels the Upper Kuparuk River and enters the Kuparuk River 12 kilometers north of the Water and Environmental Research Center (WERC) Upper Kuparuk gauging station. Streamflow at Imnavait Creek persists throughout the summer months, but during the winter months flow is non-existent. Streamflow in Imnavait Creek has been measured by researchers at the University of Alaska Fairbanks (UAF) WERC from 1985 to 2023. This data package contains continuous streamflow data collected by researchers from University of Alaska Fairbanks from 2018-2023. For UAF-WERC historical discharge data for Imnavait Creek (1985-2017) see the data package at https://arcticdata.io/catalog/view/doi%3A10.18739%2FA2K649S9D. 
    more » « less
  2. Abstract Invasive species introduction is one of the major ongoing ecological global crises. Identifying factors responsible for the success of invasive species is key for the implementation of effective management actions. The invasive filter-feeding bivalve,Corbicula, is of particular interest because it has become ubiquitous in many river basins across North America and elsewhere. Here we sampled bivalve assemblages, environmental indicators, and land cover parameters in the Ouachita highlands in southeastern Oklahoma and southwestern Arkansas, and in the Gulf Coastal Plain of Alabama to test three working models (using structural equation modeling, SEM) based on a priori scientific knowledge regardingCorbiculainvasions. Our models tested three competing hypotheses: (1) Native mussel declines are related to land use changes at the watershed level and subsequentCorbiculacolonization is a result of an empty niche; (2)Corbiculaabundance is one of the factors responsible for native mussel declines and has an interactive effect with land use change at the watershed level; (3) Native mussel declines andCorbiculasuccess are both related to land use changes at the watershed level. We found no evidence for the first two hypotheses. However, we found that environmental indicators and land cover parameters at the watershed scale were robust predictors ofCorbiculaabundance. In particular, agricultural land cover was positively related withCorbiculadensity. These results suggest that further improvement of conventional agricultural practices including the optimization of fertilizer delivery systems may represent an opportunity to manage this species by limiting nutrient inputs to stream ecosystems. Preservation of extensive floodplain habitats may help buffer these inputs by providing key ecosystem services including sediment and nutrient retention. 
    more » « less
  3. Abstract Lateral inflows control the spatial distribution of river discharge, and understanding their patterns is fundamental for accurately modelling instream flows and travel time distributions necessary for evaluating impacts of climate change on aquatic habitat suitability, river energy budgets, and fate of dissolved organic carbon. Yet, little is known about the spatial distribution of lateral inflows in Arctic rivers given the lack of gauging stations. With a network of stream gauging and meteorological stations within the Kuparuk River watershed in northern Alaska, we estimated precipitation and lateral inflows for nine subcatchments from 1 July to 4 August,2013, 2014, and 2015. Total precipitation, lateral inflows, runoff ratios (area‐normalized lateral inflow divided by precipitation), percent contribution to total basin discharge, and lateral inflow per river kilometre were estimated for each watershed for relatively dry, moderate, or wet summers. The results show substantial variability between years and subcatchments. Total basin lateral inflow depths ranged 24‐fold in response to a threefold change in rainfall between dry and wet years, whereas within‐basin lateral inflows varied fivefold from the coastal plain to the foothills. General spatial trends in lateral inflows were consistent with previous studies and mean summer precipitation patterns. However, the spatially distributed nature of these estimates revealed that reaches in the vicinity of a spring‐fed surficial ice feature do not follow general spatial trends and that the coastal plain, which is typically considered to produce minimal runoff, showed potential to contribute to total river discharge. These findings are used to provide a spatially distributed understanding of lateral inflows and identify watershed characteristics that influence hydrologic responses. 
    more » « less
  4. Tribal perspectives in water resources and education are often overlooked. Only recently, the field of hydrologic sciences began to include people in conducting science (Sivapalan et al. 2012) and to value indigenous perspectives with western science (Huntington 2002; Redsteer et al. 2012). The April 2018 issue of Journal of Contemporary Water Research & Education (JCWRE) explores emerging voices in tribal communities related to water resources quality and quantity and impacts to tribal water resources such as climate change and water use. This special issue begins with three foundational papers, providing a baseline understanding on water quality regulation, water quality disparities, and tribal economies as they relate to water settlements. The special issue features articles focusing on various water challenges facing tribes and the role of tribal colleges in addressing these challenges. There are less than 0.3% of Native American graduate students and post-doctorates in Science and Engineering and only a handful in hydrologic sciences and related sciences (NCSES 2016). While tribal lands are rich in natural resources and have significant water challenges (Cozetto et al. 2007; Smith and Frehner 2010), it is very unique that 67% of the lead authors are Native American including three Native American faculty, three Native American graduate students, and one Tribal College and University (TCU) Faculty. A deep discussion on water challenges facing tribes and Native American scientists working on these challenges are emerging voices of tribal perspectives in water resources. 
    more » « less
  5. Abstract Extreme precipitation during Hurricane Florence, which made landfall in North Carolina in September 2018, led to breaches of hog waste lagoons, coal ash pits, and wastewater facilities. In the weeks following the storm, freshwater discharge carried pollutants, sediment, organic matter, and debris to the coastal ocean, contributing to beach closures, algae blooms, hypoxia, and other ecosystem impacts. Here, the ocean pathways of land‐sourced contaminants following Hurricane Florence are investigated using the Regional Ocean Modeling System (ROMS) with a river point source with fixed water properties from a hydrologic model (WRF‐Hydro) of the Cape Fear River Basin, North Carolina's largest watershed. Patterns of contaminant transport in the coastal ocean are quantified with a finite duration tracer release based on observed flooding of agricultural and industrial facilities. A suite of synthetic events also was simulated to investigate the sensitivity of the river plume transport pathways to river discharge and wind direction. The simulated Hurricane Florence discharge event led to westward (downcoast) transport of contaminants in a coastal current, along with intermittent storage and release of material in an offshore (bulge) or eastward (upcoast) region near the river mouth, modulated by alternating upwelling and downwelling winds. The river plume patterns led to a delayed onset and long duration of contaminants affecting beaches 100 km to the west, days to weeks after the storm. Maps of the onset and duration of hypothetical water quality hazards for a range of weather conditions may provide guidance to managers on the timing of swimming/shellfishing advisories and water quality sampling. 
    more » « less