skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Scalable Demand-Aware Recommendation
Recommendation for e-commerce with a mix of durable and nondurable goods has characteristics that distinguish it from the well-studied media recommendation problem. The demand for items is a combined effect of form utility and time utility, i.e., a product must both be intrinsically appealing to a consumer and the time must be right for purchase. In particular for durable goods, time utility is a function of inter-purchase duration within product category because consumers are unlikely to purchase two items in the same category in close temporal succession. Moreover, purchase data, in contrast to rating data, is implicit with non-purchases not necessarily indicating dislike. Together, these issues give rise to the positive-unlabeled demand-aware recommendation problem that we pose via joint low-rank tensor completion and product category inter-purchase duration vector estimation. We further relax this problem and propose a highly scalable alternating minimization approach with which we can solve problems with millions of users and millions of items in a single thread. We also show superior prediction accuracies on multiple real-world datasets.  more » « less
Award ID(s):
1719097
PAR ID:
10058229
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Neural Information Processing Systems (NIPS)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Sequential recommendation is the task of predicting the next items for users based on their interaction history. Modeling the dependence of the next action on the past actions accurately is crucial to this problem. Moreover, sequential recommendation often faces serious sparsity of item-to-item transitions in a user's action sequence, which limits the practical utility of such solutions. To tackle these challenges, we propose a Category-aware Collaborative Sequential Recommender. Our preliminary statistical tests demonstrate that the in-category item-to-item transitions are often much stronger indicators of the next items than the general item-to-item transitions observed in the original sequence. Our method makes use of item category in two ways. First, the recommender utilizes item category to organize a user's own actions to enhance dependency modeling based on her own past actions. It utilizes self-attention to capture in-category transition patterns, and determines which of the in-category transition patterns to consider based on the categories of recent actions. Second, the recommender utilizes the item category to retrieve users with similar in-category preferences to enhance collaborative learning across users, and thus conquer sparsity. It utilizes attention to incorporate in-category transition patterns from the retrieved users for the target user. Extensive experiments on two large datasets prove the effectiveness of our solution against an extensive list of state-of-the-art sequential recommendation models. 
    more » « less
  2. We study markets with mixed manna, where m divisible goods and chores shall be divided among n agents to obtain a competitive equilibrium. Equilibrium allocations are known to satisfy many fairness and efficiency conditions. While a lot of recent work in fair division is restricted to linear utilities and chores, we focus on a substantial generalization to separable piecewise-linear and concave (SPLC) utilities and mixed manna. We first derive polynomial-time algorithms for markets with a constant number of items or a constant number of agents. Our main result is a polynomial-time algorithm for instances with a constant number of chores (as well as any number of goods and agents) under the condition that chores dominate the utility of the agents. Interestingly, this stands in contrast to the case when the goods dominate the agents utility in equilibrium, where the problem is known to be PPAD-hard even without chores. 
    more » « less
  3. Product search serves as an important entry point for online shopping. In contrast to web search, the retrieved results in product search not only need to be relevant but also should satisfy customers' preferences in order to elicit purchases. Starting from the same query, customers may purchase different products due to their personal taste or needs. Previous work has shown the efficacy of purchase history in personalized product search. However, customers with little or no purchase history do not benefit from personalized product search. Furthermore, preferences extracted from a customer's purchase history are usually long-term and may not always align with her short-term interests. Hence, in this paper, we leverage clicks within a query session, as implicit feedback, to represent users' hidden intents, which further act as the basis for re-ranking subsequent result pages for the query. To further solve the word mismatch problem between queries and items, we proposed an end-to-end context-aware embedding model which can capture long-term and short-term context dependencies. Our experimental results on the datasets collected from the search log of a commercial product search engine show that short-term context leads to much better performance compared with long-term and no context. Our results also show that our proposed model is more effective than word-based context-aware models. 
    more » « less
  4. Abstract The money metric utility function is an essential tool for calculating welfare-relevant growth and inflation. We show how to recover it from repeated cross-sectional data without making parametric assumptions about preferences. We do this by solving the following recursive problem. Given compensated demand, we construct money metric utility by integration. Given money metric utility, we construct compensated demand by matching households over time whose money metric utility value is the same. We illustrate our method using household consumption survey data from the United Kingdom from 1974 to 2017 and find that real consumption calculated using official aggregate inflation statistics overstates money metric utility in 1974 pounds for the poorest households by around 0.5% a year and understates it by around a third of a percentage point per year for the richest households. We extend our method to allow for missing or mismeasured prices, assuming preferences are separable between goods with well-measured prices and the rest. We discuss how our results change if the prices of some service sectors are mismeasured. 
    more » « less
  5. We consider the task of assigning indivisible goods to a set of agents in a fair manner. Our notion of fairness is Nash social welfare, i.e., the goal is to maximize the geometric mean of the utilities of the agents. Each good comes in multiple items or copies, and the utility of an agent diminishes as it receives more items of the same good. The utility of a bundle of items for an agent is the sum of the utilities of the items in the bundle. Each agent has a utility cap beyond which he does not value additional items. We give a polynomial time approximation algorithm that maximizes Nash social welfare up to a factor of e^{1/{e}} ~ 1.445. The computed allocation is Pareto-optimal and approximates envy-freeness up to one item up to a factor of 2 + epsilon. 
    more » « less