In this paper, we consider an underlay radar-massive MIMO spectrum sharing scenario in which massive MIMO base stations (BSs) with elevation beamforming capabilities are allowed to operate outside a circular exclusion zone centered at the radar. Modeling the locations of the massive MIMO BSs as a homogeneous Poisson point process (PPP), we derive an analytical expression for a tight upper bound on the average interference at the radar due to cellular transmissions. The challenge lies in bounding the worst-case elevation angle for each massive MIMO BS, for which we devise a novel construction based on the circumradius distribution of a typical Poisson-Voronoi (PV) cell. While these worst-case elevation angles are correlated for neighboring BSs due to the structure of the PV tessellation, it does not explicitly appear in our analysis because of our focus on the average interference.We also provide an estimate of the nominal average interference by approximating each cell as a circle with area equal to the average area of the typical cell. Using these results, we demonstrate that the gap between the two results remains approximately constant with respect to the exclusion zone radius. Our analysis reveals useful trends in average interference power, as a function ofmore »
Gaussian random field approximation for exclusion zones in cognitive radio networks
To protect primary users from interference caused by secondary users (SUs) in a cognitive radio network, a geographic area called an exclusion zone can be defined in which SUs are prohibited from transmitting using a specified spectrum band. We propose a Gaussian Random Field Model (GRFM) framework for determining an exclusion zone with the desired properties in practical scenarios where analytical specifications may not be
available. Based on the GRFM, we derive the radius of a disk determining the exclusion zone, assuming that the SUs are distributed geographically over a planar coverage area. Using measurement data obtained from SUs, the GRFM is applied to approximate the equivalent received signal power and aggregate interference at specified locations. Simulation results show that the GRFM approximation yields an accurate characterization of the exclusion zone.
- Publication Date:
- NSF-PAR ID:
- 10058587
- Journal Name:
- IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)
- Page Range or eLocation-ID:
- 1 to 5
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Background The opioid epidemic has caused an increase in overdose deaths which can be attributed to fentanyl combined with various illicit substances. Drug checking programs have been started by many harm reduction groups to provide tools for users to determine the composition of their street drugs. Immunoassay fentanyl test strips (FTS) allow users to test drugs for fentanyl by either filling a baggie or cooker with water to dissolve the sample and test. The antibody used in FTS is very selective for fentanyl at high dilutions, a characteristic of the traditional use of urine testing. These street sample preparation methods can lead to mg/mL concentrations of several potential interferents. We tested whether these concentrated samples could cause false positive results on a FTS. Methods 20 ng/mL Rapid Response FTS were obtained from BTNX Inc. and tested against 4 different pharmaceuticals (diphenhydramine, alprazolam, gabapentin, and naloxone buprenorphine) and 3 illicit stimulants [cocaine HCl, methamphetamine, and 3,4-methylenedioxymethamphetamine (MDMA)] in concentrations from 20 to 0.2 mg/mL. The FTS testing pad is divided into 2 sections: the control area and the test area. Control and test area signal intensities were quantified by ImageJ from photographs of the test strips and compared to a thresholdmore »
-
In dynamic spectrum access (DSA), secondary users (SU) should only be allowed to access a licensed band belonging to incumbent users (IU) when the quality-of-service (QoS) requirements of both IUs and SUs can be satisfied at the same time. However, IU’s location and its received interference strength are considered sensitive in many DSA systems which should not be revealed, making it very challenging to optimize the network utility subjected to satisfying the operation and security requirements of SUs and IUs. In this paper, we develop a secure and distributed SU transmit power control algorithm to solve this challenge. Our algorithm achieves optimal SU power control to maximize the sum of SU rates. The SINR-guaranteed coexistence between SUs and IUs are enabled to maintain effective communication, while no information is directly required from IUs. Local measurements of IU signals provided by Environmental sensing capability (ESC) also undergo a security masking process to ensure that IU location cannot be derived from its outputs. Convergence and stability properties of our algorithm and its privacy-protection strength are both theoretically analyzed and experimentally evaluated through simulations
-
In this letter, we investigate the idea of interference spreading and its effect on bit error rate (BER) performance in a cognitive radio network (CRN). The interference spreading phenomenon is caused because of the random allocation of subcarriers in an orthogonal frequency division multiplexing (OFDM)-based CRN without any spectrum-sensing mechanism. The CRN assumed in this work is of underlay configuration, where the frequency bands are accessed concurrently by both primary users (PUs) and secondary users (SUs). With random allocation, subcarrier collisions occur among the carriers of primary users (PUs) and secondary users (SUs), leading to interference among subcarriers. This interference caused by subcarrier collisions spreads out across multiple subcarriers of PUs rather than on an individual PU, therefore avoiding high BER for an individual PU. Theoretical and simulated signal to interference and noise ratio (SINR) for collision and no-collision cases are validated for M-quadrature amplitude modulation (M-QAM) techniques. Similarly, theoretical BER performance expressions are found and compared for M-QAM modulation orders under Rayleigh fading channel conditions. The BER for different modulation orders of M-QAM are compared and the relationship of average BER with interference temperature is also explored further.
-
Abstract Reliable neutron star mass measurements are key to determining the equation of state of cold nuclear matter, but such measurements are rare. Black widows and redbacks are compact binaries consisting of millisecond pulsars and semi-degenerate companion stars. Spectroscopy of the optically bright companions can determine their radial velocities, providing inclination-dependent pulsar mass estimates. Although inclinations can be inferred from subtle features in optical light curves, such estimates may be systematically biased due to incomplete heating models and poorly understood variability. Using data from the Fermi Large Area Telescope, we have searched for gamma-ray eclipses from 49 spider systems, discovering significant eclipses in 7 systems, including the prototypical black widow PSR B1957+20. Gamma-ray eclipses require direct occultation of the pulsar by the companion, and so the detection, or significant exclusion, of a gamma-ray eclipse strictly limits the binary inclination angle, providing new robust, model-independent pulsar mass constraints. For PSR B1957+20, the eclipse implies a much lighter pulsar (1.81 ± 0.07 solar masses) than inferred from optical light curve modelling.