skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ion Friction and Quantification of the Geomagnetic Influence on Gravity Wave Propagation and Dissipation in the Thermosphere-Ionosphere: GRAVITY WAVE DAMPING BY ION FRICTION
Award ID(s):
1452137
PAR ID:
10058712
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
122
Issue:
12
ISSN:
2169-9380
Page Range / eLocation ID:
12,464 to 12,475
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Gravity waves (GWs) and their associated multi‐scale dynamics are known to play fundamental roles in energy and momentum transport and deposition processes throughout the atmosphere. We describe an initial machine learning model—the Compressible Atmosphere Model Network (CAM‐Net). CAM‐Net is trained on high‐resolution simulations by the state‐of‐the‐art model Complex Geometry Compressible Atmosphere Model (CGCAM). Two initial applications to a Kelvin‐Helmholtz instability source and mountain wave generation, propagation, breaking, and Secondary GW (SGW) generation in two wind environments are described here. Results show that CAM‐Net can capture the key 2‐D dynamics modeled by CGCAM with high precision. Spectral characteristics of primary and SGWs estimated by CAM‐Net agree well with those from CGCAM. Our results show that CAM‐Net can achieve a several order‐of‐magnitude acceleration relative to CGCAM without sacrificing accuracy and suggests a potential for machine learning to enable efficient and accurate descriptions of primary and secondary GWs in global atmospheric models. 
    more » « less
  2. Abstract Superpressure balloon data of unprecedented coverage from Loon LLC is used to investigate the seasonal and latitudinal variability of lower stratospheric gravity waves over the entire intrinsic frequency spectrum. We show that seasonal variability in both gravity wave amplitudes and spectral slopes exist for a wide range of intrinsic frequencies and provide estimates of spectral slopes in five latitudinal regions for all four seasons, in five different frequency windows. The spectral slopes can be used to infer gravity wave amplitudes of intrinsic frequencies as high as 70 cycles/day from gravity waves resolved in model and reanalysis data. We also show that a robust relationship between the phase of the quasi‐biennial oscillation and gravity wave amplitudes exists for intrinsic frequencies as high as the buoyancy frequency. These are the first estimates of seasonal and latitudinal variability of gravity wave spectral slopes and high‐frequency amplitudes and constitute a significant step toward obtaining observationally constrained gravity wave parameterizations in climate models. 
    more » « less
  3. null (Ed.)
    The dynamics of initially truncated and bent line solitons for the Kadomtsev–Petviashvili (KPII) equation modelling internal and surface gravity waves is analysed using modulation theory. In contrast to previous studies on obliquely interacting solitons that develop from acute incidence angles, this work focuses on initial value problems for the obtuse incidence of two or three partial line solitons, which propagate away from one another. Despite counterpropagation, significant residual soliton interactions are observed with novel physical consequences. The initial value problem for a truncated line soliton – describing the emergence of a quasi-one-dimensional soliton from a wide channel – is shown to be related to the interaction of oblique solitons. Analytical descriptions for the development of weak and strong interactions are obtained in terms of interacting simple wave solutions of modulation equations for the local soliton amplitude and slope. In the weak interaction case, the long-time evolution of truncated and large obtuse angle solitons exhibits a decaying, parabolic wave profile with temporally increasing focal length that asymptotes to a cylindrical Korteweg–de Vries soliton. In contrast, the strong interaction case of slightly obtuse interacting solitons evolves into a steady, one-dimensional line soliton with amplitude reduced by an amount proportional to the incidence slope. This strong interaction is identified with the ‘Mach expansion’ of a soliton with an expansive corner, contrasting with the well-known Mach reflection of a soliton with a compressive corner. Interestingly, the critical angles for Mach expansion and reflection are the same. Numerical simulations of the KPII equation quantitatively support the analytical findings. 
    more » « less
  4. Flexure and extension of ice shelves in response to incident ocean surface gravity waves have been linked to iceberg calving, rift growth, and even disintegration of ice shelves. Most modeling studies utilize a plate bending model for the ice, focusing exclusively on flexural gravity waves. Ross Ice shelf seismic data shows not only flexural gravity waves, with dominantly vertical displacements, but also extensional Lamb waves, which propagate much faster with dominantly horizontal displacements. Our objective is to model the full-wave response of ice shelves, including ocean compressibility, ice elasticity, and gravity. Our model is a 2D vertical cross-section of the ice shelf and sub-shelf ocean cavity. We quantify the frequency-dependent excitation of flexural gravity and extensional Lamb waves and provide a quantitative theory for extensional Lamb wave generation by the horizontal force imparted by pressure changes on the vertical ice shelf edge exerted by gravity waves. Our model predicts a horizontal to vertical displacement ratio that increases with decreasing frequency, with ratio equal to unity at ~0.001 Hz. Furthermore, in the very long period band (<0.003 Hz), tilt from flexural gravity waves provides an order of magnitude larger contribution to seismometer horizontal components than horizontal displacements from extensional Lamb waves. 
    more » « less