skip to main content


Title: Hybrid 2D Dual‐Metal–Organic Frameworks for Enhanced Water Oxidation Catalysis
Abstract

Metal–organic frameworks (MOFs) and MOF‐derived nanostructures are recently emerging as promising catalysts for electrocatalysis applications. Herein, 2D MOFs nanosheets decorated with Fe‐MOF nanoparticles are synthesized and evaluated as the catalysts for water oxidation catalysis in alkaline medium. A dramatic enhancement of the catalytic activity is demonstrated by introduction of electrochemically inert Fe‐MOF nanoparticles onto active 2D MOFs nanosheets. In the case of active Ni‐MOF nanosheets (Ni‐MOF@Fe‐MOF), the overpotential is 265 mV to reach a current density of 10 mA cm−2in 1mKOH, which is lowered by ≈100 mV after hybridization due to the 2D nanosheet morphology and the synergistic effect between Ni active centers and Fe species. Similar performance improvement is also successfully demonstrated in the active NiCo‐MOF nanosheets. More importantly, the real catalytic active species in the hybrid Ni‐MOF@Fe‐MOF catalyst are unraveled. It is found that, NiO nanograins (≈5 nm) are formed in situ during oxygen evolution reaction (OER) process and act as OER active centers as well as building blocks of the porous nanosheet catalysts. These findings provide new insights into understanding MOF‐based catalysts for water oxidation catalysis, and also shed light on designing highly efficient MOF‐derived nanostructures for electrocatalysis.

 
more » « less
NSF-PAR ID:
10058834
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
28
Issue:
26
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Unique classes of active‐site motifs are needed for improved electrocatalysis. Herein, the activity of a new catalyst motif is engineered and isolated for the oxygen evolution reaction (OER) created by nickel–iron transition metal electrocatalysts confined within a layered zirconium phosphate matrix. It is found that with optimal intercalation, confined NiFe catalysts have an order of magnitude improved mass activity compared to more conventional surface‐adsorbed systems in 0.1mKOH. Interestingly, the confined environments within the layered structure also stabilize Fe‐rich compositions (90%) with exceptional mass activity compared to known Fe‐rich OER catalysts. Through controls and by grafting inert molecules to the outer surface, it is evidenced that the intercalated Ni/Fe species stay within the interlayer during catalysis and serve as the active site. After determining a possible structure (wycherproofite), density functional theory is shown to correlate with the observed experimental compositional trends. It is further demonstrated that the improved activity of this motif is correlated to the Fe and water content/composition within the confined space. This work highlights the catalytic enhancement possibilities available through zirconium phosphate and isolates the activity from the intercalated species versus surface/edge ones, thus opening new avenues to develop and understand catalysts within unique nanoscale chemical environments.

     
    more » « less
  2. Abstract

    2D metal–organic frameworks (2D‐MOFs) have recently emerged as promising materials for gas separations, sensing, conduction, and catalysis. However, the stability of these 2D‐MOF catalysts and the tunability over catalytic environments are limited. Herein, it is demonstrated that 2D‐MOFs can act as stable and highly accessible catalyst supports by introducing more firmly anchored photosensitizers as bridging ligands. An ultrathin MOF nanosheet‐based material, Zr‐BTB (BTB = 1,3,5‐tris(4‐carboxyphenyl)benzene), is initially constructed by connecting Zr6‐clusters with the tritopic carboxylate linker. Surface modification of the Zr‐BTB structure was realized through the attachment of porphyrin‐based carboxylate ligands on the coordinatively unsaturated Zr metal sites in the MOF through strong Zr‐carboxylate bond formation. The functionalized MOF nanosheet, namely PCN‐134‐2D, acts as an efficient photocatalyst for1O2generation and artemisinin production. Compared to the 3D analogue (PCN‐134‐3D), PCN‐134‐2D allows for fast reaction kinetics due to the enhanced accessibility of the catalytic sites within the structure and facile substrate diffusion. Additionally, PCN‐134(Ni)‐2D exhibits an exceptional yield of artemisinin, surpassing all reported homo‐ or heterogeneous photocatalysts for the artemisinin production.

     
    more » « less
  3. Abstract

    Metal–organic frameworks (MOFs) are promising materials for electrocatalysis; however, lack of electrical conductivity in the majority of existing MOFs limits their effective utilization in the field. Herein, an excellent catalytic activity of a 2D copper (Cu)‐based conductive MOF, copper tetrahydroxyquinone (CuTHQ), is reported for aqueous CO2reduction reaction (CO2RR) at low overpotentials. It is revealed that CuTHQ nanoflakes (NFs) with an average lateral size of 140 nm exhibit a negligible overpotential of 16 mV for the activation of this reaction, a high current density of ≈173 mA cm−2at −0.45 V versus RHE, an average Faradaic efficiency (F.E.) of ≈91% toward CO production, and a remarkable turnover frequency as high as ≈20.82 s−1. In the low overpotential range, the obtained CO formation current density is more than 35 and 25 times higher compared to state‐of‐the‐art MOF and MOF‐derived catalysts, respectively. The operando Cu K‐edge X‐ray absorption near edge spectroscopy and density functional theory calculations reveal the existence of reduced Cu (Cu+) during CO2RR which reversibly returns to Cu2+after the reaction. The outstanding CO2catalytic functionality of conductive MOFs (c‐MOFs) can open a way toward high‐energy‐density electrochemical systems.

     
    more » « less
  4. Energy harvesting from solar and water has created ripples in materials energy research for the last several decades, complemented by the rise of Hydrogen as a clean fuel. Among these, water electrolysis leading to generation of oxygen and hydrogen, has been one of the most promising routes towards sustainable alternative energy generation and storage, with applications ranging from metal-​air batteries, fuel cells, to solar-​to-​fuel energy conversion systems. In fact, solar water splitting is one of the most promising method to produce Hydrogen without depleting fossil-​fuel based natural resources. However, the efficiency and practical feasibility of water electrolysis is limited by the anodic oxygen evolution reaction (OER)​, which is a kinetically sluggish, electron-​intensive uphill reaction. A slow OER process also slows the other half- cell reaction, i.e. the hydrogen evolution reaction (HER) at the cathode. Hence, designing efficient catalysts for OER process from earth-​abundant resources has been one of the primary concerns for advancing solar water splitting. In the Nath group we have focused on transition metal chalcogenides as efficient OER electrocatalysts. We have proposed the idea that these chalcogenides, specifically, selenides and tellurides will show much better OER catalytic activity due to increasing covalency around the catalytically active transition metal site, compared to the oxides caused by decreasing electronegativity of the anion, which in turn leads to variation of chem. potential around the transition metal center, [e.g. lowering the Ni 2+ -​-​> Ni 3+ oxidn. potential in Ni-​based catalysts where Ni 3+ is the actually catalytically active species]​. Based on such hypothesis, we have synthesized a plethora of transition metal selenides including those based on Ni, Ni-​Fe, Co, and Ni-​Co, which show high catalytic efficiency characterized by low onset potential and overpotential at 10 mA​/cm 2 [Ni 3 Se 2 - 200 - 290 mV; Co 7 Se 8 - 260 mV; FeNi 2 Se 4 -​NrGO - 170 mV (NrGO - N-​doped reduced graphene oxide)​; NiFe 2 Se 4 - 210 mV; CoNi 2 Se 4 - 190 mV; Ni 3 Te 2 - 180 mV]​. 
    more » « less
  5. Earth-abundant oxygen evolution catalysts (OECs) with extended stability in acid can be constructed by embedding active sites within an acid-stable metal-oxide framework. Here, we report stable NiPbOxfilms that are able to perform oxygen evolution reaction (OER) catalysis for extended periods of operation (>20 h) in acidic solutions of pH 2.5; conversely, native NiOxcatalyst films dissolve immediately. In situ X-ray absorption spectroscopy and ex situ X-ray photoelectron spectroscopy reveal that PbO2is unperturbed after addition of Ni and/or Fe into the lattice, which serves as an acid-stable, conductive framework for embedded OER active centers. The ability to perform OER in acid allows the mechanism of Fe doping on Ni catalysts to be further probed. Catalyst activity with Fe doping of oxidic Ni OEC under acid conditions, as compared to neutral or basic conditions, supports the contention that role of Fe3+in enhancing catalytic activity in Ni oxide catalysts arises from its Lewis acid properties.

     
    more » « less