skip to main content


Title: Precision Sulfonic Acid Polyolefins via Heterogenous to Homogenous Deprotection
Abstract

Polyolefins containing precisely spaced sulfonic acid functionality are made. First, precision ethyl sulfonate ester diene monomers are synthesized, which then are converted to acyclic diene metathesis polymers using Grubbs' catalysis. Subsequently, the poly(ethyl sulfonate esters) are deprotected post‐polymerization via two successful routes, both using a concept of “heterogenous to homogenous deprotection.” The resulting poly(sodium sulfonate) salts are then converted to precise poly(sulfonic acids), where the sulfonic acid functionality is placed either at every ninth or 21st carbon. For comparison, random versions of poly(sulfonates), their salts, and sulfonic acid polymers are synthesized via copolymerization of the “9” sulfonate monomer with 1,9‐decadiene. Precision placement of sulfonic acid functionality could lead to materials of potential utility.

 
more » « less
NSF-PAR ID:
10059052
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Macromolecular Chemistry and Physics
Volume:
219
Issue:
11
ISSN:
1022-1352
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Gliadin, a component of gluten and a known epitope, is implicated in celiac disease (CeD) and results in an inflammatory response in CeD patients when consumed. Acrylamide‐based polyelectrolytes are employed as models to determine the effect of molecular weight and pendent group on non‐covalent interaction modes with gliadin in vitro. Poly(sodium 2‐acrylamido‐2‐methylpropane sulfonate) and poly(sodium 3‐methylpropyl‐3‐butanoate) are synthesized via aqueous reversible addition fragmentation chain transfer (aRAFT) polymerization and characterized by gel permeation chromatography‐multiangle laser light scattering. The polymer/gliadin blends are examined via circular dichroism, zeta potential measurements, 8‐anilinonaphthalene‐1‐sulfonic acid fluorescence spectroscopy, and dynamic light scattering. Acrylamide polymers containing strong anionic pendent groups have a profound effect on gliadin secondary structure and solution behavior below the isoelectric point, while polymers containing hydrophobic character only have a minor impact. The polymers have little effect on gliadin secondary structure and solution behavior at the isoelectric point.

     
    more » « less
  2. Cysteine sulfonic acid (Cys-SO3H; cysteic acid) is an oxidative post-translational modification of cysteine, resulting from further oxidation from cysteine sulfinic acid (Cys- SO2H). Cysteine sulfonic acid is considered an irreversible post-translational modification, which serves as a biomarker of oxidative stress that has resulted in oxidative damage to proteins. Cysteine sulfonic acid is anionic, as a sulfonate (Cys-SO –; cysteate), in the ionization state that 3 is almost exclusively present at physiological pH (pKa ~ –2). In order to understand protein structural changes that can occur upon oxidation to cysteine sulfonic acid, we analyzed its conformational preferences, using experimental methods, bioinformatics, and DFT-based computational analysis. Cysteine sulfonic acid was incorporated into model peptides for α-helix and polyproline II helix (PPII). Within peptides, oxidation of cysteine to the sulfonic acid proceeds rapidly and efficiently at room temperature in solution with methyltrioxorhenium (MeReO3) and H2O2. Peptides containing cysteine sulfonic acid were also generated on solid phase using trityl-protected cysteine and oxidation with MeReO3 and H2O2. Using methoxybenzyl (Mob)-protected cysteine, solid-phase oxidation with MeReO3 and H2O2 generated the Mob sulfone precursor to Cys-SO – within fully synthesized peptides. These two solid-phase methods allow the synthesis of peptides containing either Cys-SO – or Cys-SO – in a 32 practical manner, with no solution-phase synthesis required. Cys-SO – had low PPII propensity 3 for PPII propagation, despite promoting a relatively compact conformation in φ. In contrast, in a PPII initiation model system, Cys-SO – promoted PPII relative to neutral Cys, with PPII initiation similar to Cys thiolate but less than Cys-SO – or Ala. In an α-helix model system, Cys- 2 SO – promoted α-helix near the N-terminus, due to favorable helix dipole interactions and 3 favorable α-helix capping via a sulfonate-amide side chain-main chain hydrogen bond. Across all peptides, the sulfonate side chain was significantly less ordered than that of the sulfinate. Analysis of Cys-SO – in the PDB revealed a very strong propensity for local (i/i or i/i+1) side 3 chain-main chain sulfonate-amide hydrogen bonds for Cys-SO –, with > 80% of Cys-SO – 33 residues exhibiting these interactions. DFT calculations conducted to explore these conformational preferences indicated that side chain-main chain hydrogen bonds of the sulfonate with the intraresidue amide and/or with the i+1 amide were favorable. However, hydrogen bonds to water or to amides, as well as interactions with oxophilic metals, were weaker for the sulfonate than the sulfinate, due to lower charge density on the oxygens in the sulfonate. 
    more » « less
  3. Rationale

    Simple, affordable, and rapid methods for identifying the molecular weight (MW) distribution and macromolecular composition of polymeric materials are limited. Current tools require extensive solvent consumption, linear calibrations, and expensive consumables. A simple method for the determination of average MW (Mn,Mw) and chain end groups is demonstrated for synthetic homopolymer standards using direct injection electrospray ionization‐mass spectrometry (ESI‐MS) and an open‐sourced charge deconvolution (CDC) algorithm.

    Methods

    Five homopolymer standards in the 1–7 kDa MW range were analyzed using direct‐injection ESI‐MS on a quadrupole/time‐of‐flight mass spectrometer. The samples investigated, viz. two poly(ethylene oxide) (PEO) and two poly(styrene sulfonic acid) (PSS) standards with narrow polydispersity and one poly(d,l‐alanine) (pAla) standard with undefined polydispersity, were chosen to illustrate challenges with ESI‐MS quantitation. Using the UniDec program, weight average MWs (Mw) obtained from the charge‐deconvoluted spectra were compared to the reportedMwdata of the standards from size exclusion chromatography (SEC) measurements.

    Results

    The MW data derived for the PSS, PEO, and pAla standards agreed well with the corresponding reportedMwor MW range values. The method was able to provide MW, degree of polymerization (DP), and polydispersity index (PDI) information for polymers with narrow (PSS, PEO) as well as broader (pAla) molecular weight distribution; this feature provides an advantage over MW analysis via matrix‐assisted laser desorption/ionization (MALDI) for ESI‐compatible materials. PSS standards differing in average MW by only a few repeat units could be confidently distinguished. Additionally, the oligomeric resolution observed for all samples studied unveiled chain‐end information not available through chromatographic analysis.

    Conclusions

    Overall, the free and easy‐to‐use UniDec CDC algorithm provides a simple, alternative method to measuring MW and DP for polymeric materials without high solvent consumption, expensive ionization sources, or calibration curves. Information about the masses of individual oligomers and the possibility to further characterize these oligomers using tandem mass spectrometry and/or ion mobility techniques constitutes additional benefits of this approach vis‐à‐vis traditional MW and PDI elucidation through SEC.

     
    more » « less
  4. The use of ionic liquids as solvent for polymers or polymer-grafted nanoparticles provides an exciting feature to explore electrolyte-polymer interaction. 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (HMIm-TFSI) holds specific interactions with the polymer through ion-dipole or hydrogen bonding. For this work, poly(methyl methacrylate)-b-poly(styrene sulfonate) (PMMA-b-PSS) copolymer-grafted Fe3O4 nanoparticles with different sulfonation levels (~4.9-10.9 mol% SS) were synthesized and their concentration dependent ionic conductivities were reported in acetonitrile and HMIm-TFSI/acetonitrile mixture. We found that conductivity enhancement with the particle concentration in acetonitrile was due to the aggregation of grafted particles, hence sulfonic domain connectivity. The ionic conductivity was found to be related to the effective hopping transfer within ionic channels. To the contrary, the conductivity decreased or remained constant with increasing particle concentration in HMIm-TFSI/acetonitrile. This result was attributed to the ion coupling between ionic liquid and copolymer domains. 
    more » « less
  5. Herein, we present the direct modification of glucose, an abundant and inexpensive sugar molecule, to produce new sustainable and functional polymers. Glucose-6-acrylate-1,2,3,4-tetraacetate (GATA) has been synthesized and shown to provide a useful glassy component for developing an innovative family of elastomeric and adhesive materials. A series of diblock and triblock copolymers of GATA and n -butyl acrylate (n-BA) were created via Reversible Addition–Fragmentation Chain Transfer (RAFT) polymerization. Initially, poly(GATA)- b -poly(n-BA) copolymers were prepared using 4-cyano-4-[(ethylsulfanylthiocarbonyl)sulfanyl] pentanoic acid (CEP) as a chain transfer agent (CTA). These diblock copolymers demonstrated decomposition temperatures of 275 °C or greater and two glass transition temperatures ( T g ) around −45 °C and 100 °C corresponding to the PnBA and PGATA domains, respectively, as measured by differential scanning calorimetry (DSC). Triblock copolymers of GATA and n-BA, with moderate dispersities ( Đ = 1.15–1.29), were successfully synthesized when S , S -dibenzyl trithiocarbonate (DTC) was employed as the CTA. Poly(GATA)- b -poly(nBA)- b -poly(GATA) copolymers with 14–58 wt% GATA were prepared and demonstrated excellent thermomechanical properties ( T d ≥ 279 °C). Two well-separated glass transitions near the values for homopolymers of n-BA and GATA (∼−45 °C and ∼100 °C, respectively) were measured by DSC. The triblock with 14% GATA exhibited peel adhesion of 2.31 N cm −1 (when mixed with 30 wt% tackifier) that is superior to many commercial pressure sensitive adhesives (PSAs). Use of 3,5-bis(2-dodecylthiocarbonothioylthio-1oxopropoxy)benzoic acid (BTCBA) as the CTA provided a more efficient route to copolymerize GATA and n-BA. Using BTCBA, poly(GATA)- b -poly(nBA)- b -poly(GATA) triblock copolymers containing 12–25 wt% GATA, with very narrow molar mass distributions ( Đ ≤ 1.08), were prepared. The latter series of triblock copolymers showed excellent thermal stability with T d ≥ 275 °C. Only the T g for the PnBA block was observed by DSC (∼−45 °C), however, phase-separation was confirmed by small-angle X-ray scattering (SAXS) for all of these triblock copolymers. The mechanical behavior of the polymers was investigated by tensile experiments and the triblock with 25% GATA content demonstrated moderate elastomeric properties, 573 kPa stress at break and 171% elongation. This study introduces a new family of glucose-based ABA-type copolymers and demonstrates functionality of a glucose-based feedstock for developing green polymeric materials. 
    more » « less