Abstract Natural variation can provide important insights into the genetic and environmental factors that shape social behaviour and its evolution. The sweat bee,Lasioglossum baleicum, is a socially flexible bee capable of producing both solitary and eusocial nests. We demonstrate that within a single nesting aggregation, soil temperatures are a strong predictor of the social structure of nests. Sites with warmer temperatures in the spring have a higher frequency of social nests than cooler sites, perhaps because warmer temperatures provide a longer reproductive window for those nests. To identify the molecular correlates of this behavioural variation, we generated a de novo genome assembly forL. baleicum, and we used transcriptomic profiling to compare adults and developing offspring from eusocial and solitary nests. We find that adult, reproductive females have similar expression profiles regardless of social structure in the nest, but that there are strong differences between reproductive females and workers from social nests. We also find substantial differences in the transcriptomic profiles of stage‐matched pupae from warmer, social‐biased sites compared to cooler, solitary‐biased sites. These transcriptional differences are strongly predictive of adult reproductive state, suggesting that the developmental environment may set the stage for adult behaviours inL. baleicum. Together, our results help to characterize the molecular mechanisms shaping variation in social behaviour and highlight a potential role of environmental tuning during development as a factor shaping adult behaviour and physiology in this socially flexible bee.
more »
« less
The evolution of nesting behaviour in Peromyscus mice
Structures built by animals, such as nests, often can be considered extended phenotypes that facilitate the study of animal behaviour. For rodents, nest building is both an important form of behavioural thermoregulation and a critical component of parental care. Changes in nest structure or the prioritization of nesting behaviour are therefore likely to have consequences for survival and reproduction, and both biotic and abiotic environmental factors are likely to influence the adaptive value of such differences. Here we first develop a novel assay to investigate interspecific variation in the nesting behaviour of deer mice (genus Peromyscus). Using this assay, we find that, while there is some variation in the complexity of the nests built by Peromyscus mice, differences in the latency to begin nest construction are more striking. Four of the seven taxa examined here build nests within an hour of being given nesting material, but this latency to nest is not related to ultimate differences in nest structure, suggesting that the ability to nest is relatively conserved within the genus, but species differ in their prioritization of nesting behaviour. We also find that latency to nest is not correlated with body size, climate or the construction of burrows that create microclimates. However, the four taxa with short nesting latencies all have monogamous mating systems, suggesting that differences in nesting latency may be related to social environment. This detailed characterization of nesting behaviour within the genus provides an important foundation for future studies of the genetic and neurobiological mechanisms that contribute to the evolution of behaviour.
more »
« less
- Award ID(s):
- 1701805
- PAR ID:
- 10059066
- Date Published:
- Journal Name:
- Animal behaviour
- Volume:
- 139
- ISSN:
- 0003-3472
- Page Range / eLocation ID:
- 103
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Human disturbance impacts the breeding behavior of many species, and it is particularly important to understand how these human-caused changes affect vulnerable taxa, such as turtles. Habitat alteration can change the amount and quality of suitable nesting habitat, while human presence during nesting may influence nesting behavior. Consequently, both habitat alteration and human presence can influence the microhabitat that females choose for nesting. In the summer of 2019, we located emydid turtle nests in east-central Alabama, USA, in areas with varying levels of human disturbance (high, intermediate, low). We aimed to determine whether turtles selected nest sites based on a range of microhabitat variables comparing maternally selected natural nests to randomly chosen artificial nests. We also compared nest site choice across areas with different levels of human disturbance. Natural nests had less variance in canopy openness and average daily mean and minimum temperature than artificial nests, but microhabitat variables were similar across differing levels of disturbance. Additionally, we experimentally quantified nest predation across a natural to human-disturbed gradient. Nest predation rates were higher in areas with low and intermediate levels of disturbance than in areas with high human disturbance. Overall, these results show that turtles are not adjusting their choices of nest microhabitat when faced with anthropogenic change, suggesting that preserving certain natural microhabitat features will be critical for populations in human-disturbed areas.more » « less
-
Abstract The temperature of the nest influences fitness in cavity-nesting bees. Females may choose nest cavities that mitigate their offspring’s exposure to stressful temperatures. This study aims to understand how cavity temperature impacts the nesting preference of the solitary bee Megachile rotundata (Fabricius) under field conditions. We designed and 3D printed nest boxes that measured the temperatures of 432 cavities. Nest boxes were four-sided with cavity entrances facing northeast, northwest, southeast, and southwest. Nest boxes were placed along an alfalfa field in Fargo, ND and were observed daily for completed nests. Our study found that cavity temperature varied by direction the cavity faced and by the position of the cavity within the nest box. The southwest sides recorded the highest maximum temperatures while the northeast sides recorded the lowest maximum temperatures. Nesting females filled cavities on the north-facing sides faster than cavities on the south-facing sides. The bees preferred to nest in cavities with lower average temperatures during foraging hours, and cavities that faced to the north. The direction the cavity faced was associated with the number of offspring per nest. The southwest-facing cavities had fewer offspring than nests on the northeast side. Our study indicates that the nesting box acts as a microclimate, with temperature varying by position and direction of the cavity. Variation in cavity temperature affected where females chose to nest, but not their reproductive investment.more » « less
-
We describe the nesting biology of Centris (Paracentris) burgdorfi, a solitary bee that nests in sandstone in northeastern Brazil. The nest consists of a shallow tunnel with access to the brood cells. Females of C. burgdorfi made 1–7 brood cells per nest with each cell requiring 2.58 ± 0.40 (X ± SD) days to construct. The average cell-building construction time was longer when compared to other Centris species. Females were larger than males, and this difference was reflected in the size of their respective emergence cells. The temperature within C. burgdorfi nests was lower when compared to ambient temperature. Our study is the first to report the nesting biology of C. burgdorfi. The detailed behavior of the female inside the nest was also described, which is unusual in the study of solitary bee nesting biology.more » « less
-
abstract: In recent years, ecological research has become increasingly synthetic, relying on revolutionary changes in data availability and accessibility. In spite of their strengths, these approaches may cause us to overlook natural history knowledge that is not part of the digitized English-language scientific record. Here, we combine historic and modern documents to quantify species-specific nesting habitat associations of bumblebees (Bombus spp. Latreille, 1802 Apidae). We compiled nest location data from 316 documents, of which 81 were non-English and 93 were published before 1950. We tested whether nesting traits show phylogenetic signal, examined relationships between habitat associations at different scales, and compared methodologies used to locate nests. We found no clear phylogenetic signals, but we found that nesting habitat associations were somewhat generalizable within subgenera. Landcover associations were related to nesting substrate associations; for example, surface-nesting species also tended to be associated with grasslands. Methodology was associated with nest locations; community scientists were most likely and researchers using nest boxes were least likely to report nests in human-dominated environments. These patterns were not apparent in past syntheses based only on the modern digital record. Our findings highlight the tremendous value of historic accounts for quantifying species’ traits and other basic biological knowledge needed to interpret global-scale patterns.more » « less
An official website of the United States government

