Abstract As single cells, ciliates build, duplicate, and even regenerate complex cortical patterns by largely unknown mechanisms that precisely position organelles along two cell‐wide axes: anterior–posterior and circumferential (left–right). We review our current understanding of intracellular patterning along the anterior–posterior axis in ciliates, with emphasis on how the new pattern emerges during cell division. We focus on the recent progress at the molecular level that has been driven by the discovery of genes whose mutations cause organelle positioning defects in the model ciliateTetrahymena thermophila. These investigations have revealed a network of highly conserved kinases that are confined to either anterior or posterior domains in the cell cortex. These pattern‐regulating kinases create zones of cortical inhibition that by exclusion determine the precise placement of organelles. We discuss observations and models derived from classical microsurgical experiments in large ciliates (includingStentor) and interpret them in light of recent molecular findings inTetrahymena. In particular, we address the involvement of intracellular gradients as vehicles for positioning organelles along the anterior‐posterior axis.
more »
« less
A novel gene’s role in an ancient mechanism: secreted Frizzled-related protein 1 is a critical component in the anterior–posterior Wnt signaling network that governs the establishment of the anterior neuroectoderm in sea urchin embryos
- Award ID(s):
- 1736026
- PAR ID:
- 10059190
- Date Published:
- Journal Name:
- EvoDevo
- Volume:
- 9
- Issue:
- 1
- ISSN:
- 2041-9139
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Humans form social coalitions in every society, yet we know little about how we learn and represent social group boundaries. Here we derive predictions from a computational model of latent structure learning to move beyond explicit category labels and interpersonal, or dyadic similarity as the sole inputs to social group representations. Using a model-based analysis of functional neuroimaging data, we find that separate areas correlate with dyadic similarity and latent structure learning. Trial-by-trial estimates of 'allyship' based on dyadic similarity between participants and each agent recruited medial prefrontal cortex/pregenual anterior cingulate (pgACC). Latent social group structure-based allyship estimates, in contrast, recruited right anterior insula (rAI). Variability in the brain signal from rAI improved prediction of variability in ally-choice behavior, whereas variability from the pgACC did not. These results provide novel insights into the psychological and neural mechanisms by which people learn to distinguish 'us' from 'them'.more » « less
-
Abstract Neurocognitive models of semantic memory have proposed that the ventral anterior temporal lobes (vATLs) encode a graded and multidimensional semantic space—yet neuroimaging studies seeking brain regions that encode semantic structure rarely identify these areas. In simulations, we show that this discrepancy may arise from a crucial mismatch between theory and analysis approach. Utilizing an analysis recently formulated to investigate graded multidimensional representations, representational similarity learning (RSL), we decoded semantic structure from ECoG data collected from the vATL cortical surface while participants named line drawings of common items. The results reveal a graded, multidimensional semantic space encoded in neural activity across the vATL, which evolves over time and simultaneously expresses both broad and finer-grained semantic structure among animate and inanimate concepts. The work resolves the apparent discrepancy within the semantic cognition literature and, more importantly, suggests a new approach to discovering representational structure in neural data more generally.more » « less
An official website of the United States government

