skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Review on solid-solid phase change materials for thermal energy storage: Molecular structure and thermal properties
Award ID(s):
1662903 1662675
PAR ID:
10059215
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Applied Thermal Engineering
Volume:
127
Issue:
C
ISSN:
1359-4311
Page Range / eLocation ID:
1427 to 1441
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Thermal rectification is an exotic thermal transport phenomenon which allows heat to transfer in one direction but block the other. We demonstrate an unusual dual-mode solid-state thermal rectification effect using a heterogeneous “irradiated-pristine” polyethylene nanofiber junction as a nanoscale thermal diode, in which heat flow can be rectified in both directions by changing the working temperature. For the nanofiber samples measured here, we observe a maximum thermal rectification factor as large as ~50%, which only requires a small temperature bias of <10 K. The tunable nanoscale thermal diodes with large rectification and narrow temperature bias open up new possibilities for developing advanced thermal management, energy conversion and, potentially thermophononic technologies. 
    more » « less
  2. Abstract Growing technical demand for thermal management stems from the pursuit of high–efficient energy utilization and the reuse of wasted thermal energy, which necessitates the manipulation of heat flow with electronic analogs to improve device performance. Here, recent experimental progress is reviewed for thermal switching materials, aiming to achieve all–solid–state thermal switches, which are an enabling technology for solid–state thermal circuits. Moreover, the current understanding for discovering thermal switching materials is reshaped from the aspect of heat conduction mechanisms under external controls. Furthermore, current challenges and future perspectives are provided to highlight new and emerging directions for materials discovery in this continuously evolving field. 
    more » « less
  3. Thermal transport across solid interfaces is of great importance for applications like power electronics. In this work, we perform non-equilibrium molecular dynamics simulations to study the effect of light atoms on the thermal transport across SiC/GaN interfaces, where light atoms refer to substitutional or interstitial defect atoms lighter than those in the pristine lattice. Various light atom doping features, such as the light atom concentration, mass of the light atom, and skin depth of the doped region, have been investigated. It is found that substituting Ga atoms in the GaN lattice with lighter atoms ( e.g. boron atoms) with 50% concentration near the interface can increase the thermal boundary conductance (TBC) by up to 50%. If light atoms are introduced interstitially, a similar increase in TBC is observed. Spectral analysis of interfacial heat transfer reveals that the enhanced TBC can be attributed to the stronger coupling of mid- and high-frequency phonons after introducing light atoms. We have also further included quantum correction, which reduces the amount of enhancement, but it still exists. These results may provide a route to improve TBC across solid interfaces as light atoms can be introduced during material growth. 
    more » « less
  4. Abstract The thermal equation of state (TEOS) for solids is a mathematic model among pressure, temperature and density, and is essential for geophysical, geochemical, and other high pressure–temperature (high P–T) researches. However, in the last few decades, there has been a growing concern about the accuracy of the pressure scales of the calibrants, and efforts have been made to improve it by either introducing a reference standard or building new thermal pressure models. The existing thermal equation of state,P(V,T) = P(V,T0) + Pth(V,T), consists of an isothermal compression and an isochoric heating, while the thermal pressure is the pressure change in the isochoric heating. In this paper, we demonstrate that, for solids in a soft pressure medium in a diamond anvil cell, the thermal pressure can neither be determined from a single heating process, nor from the thermal pressure of its calibrant. To avoid the thermal pressure, we propose to replace the thermal pressure with a well-known thermal expansion model, and integrate it with the isothermal compression model to yields a Birch–Murnaghan-expansion TEOS model, called VPT TEOS. The predicted pressure of MgO and Au at ambient pressure from Birch–Murnaghan-expansion VPT TEOS model matches the experimental pressure of zero (0) GPa very well, while the pressure prediction from the approximated Anderson PVT TEOS exhibit a big deviation and a wrong trend. 
    more » « less