In plants, 24 nucleotide long heterochromatic si
Plant small
- Publication Date:
- NSF-PAR ID:
- 10059346
- Journal Name:
- The Plant Journal
- Volume:
- 94
- Issue:
- 6
- Page Range or eLocation-ID:
- p. 1051-1063
- ISSN:
- 0960-7412
- Publisher:
- Wiley-Blackwell
- Sponsoring Org:
- National Science Foundation
More Like this
-
Summary RNA s (het‐siRNA s) transcriptionally regulate gene expression byRNA ‐directedDNA methylation (RdDM ). The biogenesis of most het‐siRNA s depends on the plant‐specificRNA polymeraseIV (PolIV ), andARGONAUTE 4 (AGO 4) is a major het‐siRNA effector protein. Through genome‐wide analysis ofsRNA ‐seq data sets, we found that is required for the accumulation of a small subset of het‐siAGO 4RNA s. The accumulation of ‐dependent het‐siAGO 4RNA s also requires several factors known to participate in the effector portion of the RdDM pathway, includingRNA POLYMERASE V (POL V),DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM 2) andSAWADEE HOMEODOMAIN HOMOLOGUE 1 (SHH 1). Like manyAGO proteins,AGO 4 is an endonuclease that can ‘slice’RNA s. We found that a slicing‐defectiveAGO 4 was unable to fully recover dependent het‐siAGO 4‐RNA accumulation fromago4 mutant plants. Collectively, our data suggest that ‐dependent siAGO 4RNA s are secondary siRNA s dependent on the prior activity of the RdDM pathway at certain loci. -
Summary Like metazoans, plants use small regulatory
RNA s (sRNA s) to direct gene expression. Several classes ofsRNA s, which are distinguished by their origin and biogenesis, exist in plants. Among them, microRNA s (miRNA s) andtrans ‐acting small interferingRNA s (ta‐siRNA s) mainly inhibit gene expression at post‐transcriptional levels. In the past decades, plant miRNA s and ta‐siRNA s have been shown to be essential for numerous developmental processes, including growth and development of shoots, leaves, flowers, roots and seeds, among others. In addition, miRNA s and ta‐siRNA s are also involved in the plant responses to abiotic and biotic stresses, such as drought, temperature, salinity, nutrient deprivation, bacteria, virus and others. This review summarizes the roles of miRNA s and ta‐siRNA s in plant physiology and development. -
Summary Despite well established roles of micro
RNA s in plant development, few aspects have been addressed to understand their effects in seeds especially on lipid metabolism. In this study, we showed that overexpressing microRNA 167A (miR167OE ) in camelina (Camelina sativa ) under a seed‐specific promoter changed fatty acid composition and increased seed size. Specifically, the miR167OE seeds had a lower α‐linolenic acid with a concomitantly higher linoleic acid content than the wild‐type. This decreased level of fatty acid desaturation corresponded to a decreased transcriptional expression of the camelina fatty acid desaturase3 (Cs ) in developing seeds. MiR167 targeted the transcription factor auxin response factor (CsFAD 3ARF 8) in camelina, as had been reported previously in Arabidopsis. Chromatin immunoprecipitation experiments combined with transcriptome analysis indicated that CsARF 8 bound to promoters of camelina andbZIP 67 genes. These transcription factors directly or through theABI 3ABI 3‐bZIP 12 pathway regulateCs expression and affect α‐linolenic acid accumulation. In addition, to decipher the miR167A‐CsFAD 3ARF 8 mediated transcriptional cascade forCs suppression, transcriptome analysis was conducted to implicate mechanisms that regulate seed size in camelina. Expression levels of many genes were altered in miR167FAD 3OE , including orthologs that have previously been identified to affect seed size in other plants. Mostmore » -
Abstract ARGONAUTES are the central effector proteins of
RNA silencing which bind target transcripts in a smallRNA ‐guided manner.Arabidopsis thaliana has 10 (ARGONAUTE ) genes, with specialized roles inAGO RNA ‐directedDNA methylation, post‐transcriptional gene silencing, and antiviral defense. To better understand specialization among genes at the level of transcriptional regulation we tested a library of 1497 transcription factors for binding to the promoters ofAGO ,AGO 1 , andAGO 10 using yeast 1‐hybrid assays. A ranked list of candidateAGO 7DNA ‐bindingTF s revealed binding of the promoter by a number of proteins in two families: the miR156‐regulatedAGO 7SPL family and the miR319‐regulatedTCP family, both of which have roles in developmental timing and leaf morphology. Possible functions forSPL andTCP binding are unclear: we showed that these binding sites are not required for the polar expression pattern of , nor for the function ofAGO 7 in leaf shape. NormalAGO 7 transcription levels and function appear to depend instead on an adjacent 124‐bp region. Progress in understanding the structure of this promoter may aid efforts to understand how the conservedAGO 7AGO 7‐triggered pathway functions in timing and polarity.TAS 3 -
Summary The mitochondrial and chloroplast
mRNA s of the majority of land plants are modified through cytidine to uridine (C‐to‐U)RNA editing. Previously, forward and reverse genetic screens demonstrated a requirement for pentatricopeptide repeat (PPR ) proteins forRNA editing. Moreover, chloroplast editing factorsOZ 1,RIP 2,RIP 9 andORRM 1 were identified in co‐immunoprecipitation (co‐IP) experiments, albeit the minimal complex sufficient for editing activity was never deduced. The current study focuses on isolated, intact complexes that are capable of editing distinct sites. Peak editing activity for four sites was discovered in size‐exclusion chromatography (SEC) fractions ≥ 670 kDa, while fractions estimated to be approximately 413 kDa exhibited the greatest ability to convert a substrate containing the editing siterps14 C80.RNA content peaked in the ≥ 670 kDa fraction. Treatment of active chloroplast extracts withRN ase A abolished the relationship of editing activity with high‐MW fractions, suggesting a structuralRNA component in native complexes. By immunoblotting,RIP 9,OTP 86,OZ 1 andORRM 1 were shown to be present in active gel filtration fractions, thoughOZ 1 andORRM 1 were mainly found in low‐MW inactive fractions. Active editing factor complexes were affinity‐purified using anti‐RIP 9 antibodies, and orthologs to putativeArabidopsis thaliana RNA editing factorPPR proteins,RIP 2,RIP 9,RIP 1,OZ 1,ORRM 1 andISE 2 were identified via mass spectrometry. Westernmore »