skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 15 until 2:00 AM ET on Saturday, November 16 due to maintenance. We apologize for the inconvenience.


Title: Azo Compounds Derived from Electrochemical Reduction of Nitro Compounds for High Performance Li‐Ion Batteries
Abstract

Organic compounds are desirable alternatives for sustainable lithium‐ion battery electrodes. However, the electrochemical properties of state‐of‐the‐art organic electrodes are still worse than commercial inorganic counterparts. Here, a new chemistry is reported based on the electrochemical conversion of nitro compounds to azo compounds for high performance lithium‐ion batteries. 4‐Nitrobenzoic acid lithium salt (NBALS) is selected as a model nitro compound to systemically investigate the structure, lithiation/delithiation mechanism, and electrochemical performance of nitro compounds. NBALS delivers an initial capacity of 153 mAh g−1at 0.5 C and retains a capacity of 131 mAh g−1after 100 cycles. Detailed characterizations demonstrate that during initial electrochemical lithiation, the nitro group in crystalline NBALS is irreversibly reduced into an amorphous azo compound. Subsequently, the azo compound is reversibly lithiated/delithiated in the following charge/discharge cycles with high electrochemical performance. The lithiation/delithiation mechanism of azo compounds is also validated by directly using azo compounds as electrode materials, which exhibit similar electrochemical performance to nitro compounds, while having a much higher initial Coulombic efficiency. Therefore, this work proves that nitro compounds can be electrochemically converted to azo compounds for high performance lithium‐ion batteries.

 
more » « less
NSF-PAR ID:
10059546
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
30
Issue:
23
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The wide applications of rechargeable batteries require state‐of‐the‐art batteries that are sustainable (abundant resource), tolerant to high‐temperature operations, and excellent in delivering high capacity and long‐term cycling life. Due to the scarcity and uneven distribution of lithium, it is urgent to develop alternative rechargeable batteries. Herein, an organic compound, azobenzene‐4,4′‐dicarboxylic acid potassium salts (ADAPTS) is developed, with an azo group as the redox center for high performance potassium‐ion batteries (KIBs). The extended π‐conjugated structure in ADAPTS and surface reactions between ADAPTS and K‐ions enable the stable charge/discharge of K‐ion batteries even at high temperatures up to 60 °C. When operated at 50 °C, ADAPTS anode delivers a reversible capacity of 109 mAh g−1at 1C for 400 cycles. A reversible capacity of 77 mAh g−1is retained at 2C for 1000 cycles. At 60 °C, the ADAPTS‐based KIBs deliver a high capacity of 113 mAh g−1with 81% capacity retention at 2C after 80 cycles. The exceptional electrochemical performance demonstrates that ADAPTS is a promising electrode material for high‐temperature KIBs.

     
    more » « less
  2. Abstract

    Si‐based anodes with a stiff diamond structure usually suffer from sluggish lithiation/delithiation reaction due to low Li‐ion and electronic conductivity. Here, a novel ternary compound ZnSi2P3with a cation‐disordered sphalerite structure, prepared by a facile mechanochemical method, is reported, demonstrating faster Li‐ion and electron transport and greater tolerance to volume change during cycling than the existing Si‐based anodes. A composite electrode consisting of ZnSi2P3and carbon achieves a high initial Coulombic efficiency (92%) and excellent rate capability (950 mAh g−1at 10 A g−1) while maintaining superior cycling stability (1955 mAh g−1after 500 cycles at 300 mA g−1), surpassing the performance of most Si‐ and P‐based anodes ever reported. The remarkable electrochemical performance is attributed to the sphalerite structure that allows fast ion and electron transport and the reversible Li‐storage mechanism involving intercalation and conversion reactions. Moreover, the cation‐disordered sphalerite structure is flexible to ionic substitutions, allowing extension to a family of Zn(Cu)Si2+xP3solid solution anodes (x= 0, 2, 5, 10) with large capacity, high initial Coulombic efficiency, and tunable working potentials, representing attractive anode candidates for next‐generation, high‐performance, and low‐cost Li‐ion batteries.

     
    more » « less
  3.  
    more » « less
  4. Abstract

    The metallic tin (Sn) anode is a promising candidate for next‐generation lithium‐ion batteries (LIBs) due to its high theoretical capacity and electrical conductivity. However, Sn suffers from severe mechanical degradation caused by large volume changes during lithiation/delithiation, which leads to a rapid capacity decay for LIBs application. Herein, a Cu–Sn (e.g., Cu3Sn) intermetallic coating layer (ICL) is rationally designed to stabilize Sn through a structural reconstruction mechanism. The low activity of the Cu–Sn ICL against lithiation/delithiation enables the gradual separation of the metallic Cu phase from the Cu–Sn ICL, which provides a regulatable and appropriate distribution of Cu to buffer volume change of Sn anode. Concurrently, the homogeneous distribution of the separated Sn together with Cu promotes uniform lithiation/delithiation, mitigating the internal stress. In addition, the residual rigid Cu–Sn intermetallic shows terrific mechanical integrity that resists the plastic deformation during the lithiation/delithiation. As a result, the Sn anode enhanced by the Cu–Sn ICL shows a significant improvement in cycling stability with a dramatically reduced capacity decay rate of 0.03% per cycle for 1000 cycles. The structural reconstruction mechanism in this work shines a light on new materials and structural design that can stabilize high‐performance and high‐volume‐change electrodes for rechargeable batteries and beyond.

     
    more » « less
  5. Pre-lithiation is the most effective method to overcome the initial capacity loss of high-capacity electrodes and has the potential to be used in beyond-conventional lithium-ion batteries. In this article we focus on two types of pre-lithiation: the first type can be applied to batteries in which the cathode has been fully lithiated but the anode has a large initial capacity loss, such as batteries made with lithium metal oxide cathode and silicon-carbon anode. The second type can be applied to batteries in which both electrodes are initially lithium-free and suffer a loss of lithium during the initial cycles, such as batteries made with sulfurized-polyacrylonitrile cathode and silicon-carbon anode. We describe the pre-lithiation procedures and electrode potential profiles during pre-lithiation corresponding to different pre-lithiation sources for both types of pre-lithiation. We also derive formulas for the theoretical specific energy and energy density that are based entirely on measurable parameters such as specific capacities, porosities, mass densities of two electrodes and extra lithium source, Coulombic efficiencies of electrodes, and the voltage of the cell. These formulas can be applied to different pre-lithiation sources to predict the specific energy of conventional and beyond-conventional lithium-ion batteries as a function of the type of pre-lithiation. 
    more » « less