skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Unimolecular Decay of Criegee Intermediates to OH Radical Products: Prompt and Thermal Decay Processes
Award ID(s):
1664572
PAR ID:
10059945
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Accounts of Chemical Research
Volume:
51
Issue:
4
ISSN:
0001-4842
Page Range / eLocation ID:
978 to 985
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We give a proof of local decay estimates for Schrödinger-type equations, which is based on the knowledge of Asymptotic Completeness. This approach extends to time dependent potential perturbations, as it does not rely on Resolvent Estimates or related methods. Global in time Strichartz estimates follow for quasi-periodic time-dependent potentials from our results. 
    more » « less
  2. Light-induced energy confinement in nanoclusters via plasmon excitations influences applications in nanophotonics, photocatalysis, and the design of controlled slow electron sources. The resonant decay of these excitations through the cluster’s ionization continuum provides a unique probe of the collective electronic behavior. However, the transfer of a part of this decay amplitude to the continuum of a second conjugated cluster may offer control and efficacy in sharing the energy nonlocally to instigate remote collective events.With the example of a spherically nested dimer Na20@C240 of two plasmonic systems we find that such a transfer is possible through the resonant intercluster Coulombic decay (RICD) as a fundamental process. This plasmonic RICD signal can be experimentally detected by the photoelectron velocity map imaging technique. 
    more » « less