skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Enabling Work-conserving Bandwidth Guarantees for Multi-tenant Datacenters via Dynamic Tenant-Queue Binding
Award ID(s):
1717313
PAR ID:
10059987
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the 37th IEEE International Conference on Computer Communications
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    FPGAs are getting an increasing interest from public clouds and cloud research projects. They are particularly attractive because of their ability to serve as energy efficient and customizable hardware accelerators. Commercial clouds have however highlighted the lack of multi-tenancy support, which does not permit hardware consolidation as it is not possible to space-share FPGA resources between multiple tenants. In this paper, we propose an architecture that divides the FPGA into logically isolated regions that we call ” virtual regions ” (VR). The VRs are immersed in a NoC interconnect allowing flexible communication, fast data movement, and low hardware footprint. The proposed architecture enables multitenancy as VRs can be allocated to different tenants at runtime. 
    more » « less
  2. Cloud visualization and multi-tenant networking provide Infrastructure as a Service (IaaS) provider a new and innovative way to offer the on-demand services to their customers, such as the easy provisioning of new applications and the better resource efficiency and scalability. However, existing data-intensive applications require more powerful processor and computing power, as well as a high bandwidth, low latency and consistent networking service. In order to boost the performance of computing and networking services, as well as reduce the overhead of the software virtualization, we propose a new data center network design based on OpenStack, which is a promising cloud operating system solution. Specifically, we map the OpenStack networking services to the hardware switch, and perform hardware-accelerated L2 switch and L3 routing to solve the software limitations, as well as achieve the software-like scalability and flexibility. We designed our prototype system via the Arista Software-Defined-Networking (SDN) switch, and evaluated the performance improvement in terms of the bandwidth and delay using various tools. Our experimental results demonstrate that our datacenter networking solution achieves higher bandwidth, lower latency, and lower CPU utilization of the host server. 
    more » « less
  3. Recent research has exposed a number of security issues related to the use of FPGAs in embedded system and cloud computing environments. Circuits that deliberately waste power can be carefully crafted by a malicious cloud FPGA user and deployed to cause denial-of-service and fault injection attacks. The main defense strategy used by FPGA cloud services involves checking user-submitted designs for circuit structures that are known to aggressively consume power. Unfortunately, this approach is limited by an attacker’s ability to conceive new designs that defeat existing checkers. In this work, our contributions are twofold. We evaluate a variety of circuit power wasting techniques that typically are not flagged by design rule checks imposed by FPGA cloud computing vendors. The efficiencies of five power wasting circuits, including our new design, are evaluated in terms of power consumed per logic resource. We then show that the source of voltage attacks based on power wasters can be identified. Our monitoring approach localizes the attack and suppresses the clock signal for the target region within 21 μs, which is fast enough to stop an attack before it causes a board reset. All experiments are performed using a state-of-the-art Intel Stratix 10 FPGA. 
    more » « less
  4. Operators in multi-tenant cloud datacenters require support for diverse and complex end-to-end policies, such as, reachability, middlebox traversals, isolation, traffic engineering, and network resource management. We present Genesis, a datacenter network management system which allows policies to be specified in a declarative manner without explicitly programming the network data plane. Genesis tackles the problem of enforcing policies by synthesizing switch forwarding tables. It uses the formal foundations of constraint solving in combination with fast off-the-shelf SMT solvers. To improve synthesis performance, Genesis incorporates a novel search strategy that uses regular expressions to specify properties that leverage the structure of datacenter networks, and a divide-and-conquer synthesis procedure which exploits the structure of policy relationships. We have prototyped Genesis, and conducted experiments with a variety of workloads on real-world topologies to demonstrate its performance. 
    more » « less