skip to main content


Title: Understanding genetic control of root system architecture in soybean: Insights into the genetic basis of lateral root number: GWAS of soybean root system architectural traits
NSF-PAR ID:
10060544
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Plant, Cell & Environment
Volume:
42
Issue:
1
ISSN:
0140-7791
Page Range / eLocation ID:
p. 212-229
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Legume plants such as soybean produce two major types of root lateral organs, lateral roots and root nodules. A robust computational framework was developed to predict potential gene regulatory networks (GRNs) associated with root lateral organ development in soybean. A genome-scale expression data set was obtained from soybean root nodules and lateral roots and subjected to biclustering using QUBIC (QUalitative BIClustering algorithm). Biclusters and transcription factor (TF) genes with enriched expression in lateral root tissues were converged using different network inference algorithms to predict high-confidence regulatory modules that were repeatedly retrieved in different methods. The ranked combination of results from all different network inference algorithms into one ensemble solution identified 21 GRN modules of 182 co-regulated genes networks, potentially involved in root lateral organ development stages in soybean. The workflow correctly predicted previously known nodule- and lateral root-associated TFs including the expected hierarchical relationships. The results revealed distinct high-confidence GRN modules associated with early nodule development involving AP2, GRF5 and C3H family TFs, and those associated with nodule maturation involving GRAS, LBD41 and ARR18 family TFs. Knowledge from this work supported by experimental validation in the future is expected to help determine key gene targets for biotechnological strategies to optimize nodule formation and enhance nitrogen fixation. 
    more » « less
  2. The objective of this study was to determine the effects of ILeVO (fluopyram) and VOTiVO (Bacillus firmus I-1582) seed treatments on Heterodera glycines second-stage juvenile (J2) root penetration and behavior. In a growth chamber experiment, roots of soybeans grown from treated or untreated seeds were inoculated with H. glycines J2s at soil depths of 2.5, 5, or 7.5 cm. ILeVO significantly reduced H. glycines root penetration compared with the untreated control, but only when J2s were inoculated at a soil depth of 2.5 cm, which was near the seed. Changes in nematode behavior were assessed by collecting 60-s videos of J2s after 2 h of exposure to exudates from treated seeds or radicles from treated seeds or from soil leachates in which treated seeds were planted. X- and y-coordinates of each of the 13 reference points were recorded every hour for 24 h. A custom program analyzed and transformed the coordinates into nematode motion parameters (speed and total change in curvature). ILeVO, but not VOTiVO, seed exudates significantly reduced J2 speed relative to the untreated control. Soil leachates from ILeVO or VOTiVO treatments had no consistent effect on H. glycines speed or total change in curvature compared with the untreated control. In another experiment, treated or untreated seeds were incubated in wells of 6-well tissue culture plates containing 11.5% Pluronic gel. Seeds were removed after 2 h, and approximately 50 J2s then were pipetted into each well. The plates were scanned every 60 min for 24 h, and the number of J2s in each well that moved a minimum distance of ≥300 µm was determined using another custom software program. ILeVO, but not VOTiVO, significantly reduced the movement of J2 populations relative to control wells in which no seeds were added. And wells that had seeds, treated or not, yielded significantly less J2 movement compared with the no-seed control. The results of these experiments indicate that ILeVO reduces activity on H. glycines J2s but may not affect nematodes beyond a limited area surrounding the treated seed. 
    more » « less