skip to main content


Title: The congruence subgroup problem for low rank free and free metabelian groups
Award ID(s):
1700165
NSF-PAR ID:
10060708
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Algebra
Volume:
500
Issue:
C
ISSN:
0021-8693
Page Range / eLocation ID:
171 to 192
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Krattenthaler, Christian ; Thibon, Jean-Yves (Ed.)
  2. Abstract

    Accurate estimation of solvation free energy (SFE) lays the foundation for accurate prediction of binding free energy. The Poisson‐Boltzmann (PB) or generalized Born (GB) combined with surface area (SA) continuum solvation method (PBSA and GBSA) have been widely used in SFE calculations because they can achieve good balance between accuracy and efficiency. However, the accuracy of these methods can be affected by several factors such as the charge models, polar and nonpolar SFE calculation methods and the atom radii used in the calculation. In this work, the performance of the ABCG2 (AM1‐BCC‐GAFF2) charge model as well as other two charge models, that is, RESP (Restrained Electrostatic Potential) and AM1‐BCC (Austin Model 1‐bond charge corrections), on the SFE prediction of 544 small molecules in water by PBSA/GBSA was evaluated. In order to improve the performance of the PBSA prediction based on the ABCG2 charge, we further explored the influence of atom radii on the prediction accuracy and yielded a set of atom radius parameters for more accurate SFE prediction using PBSA based on the ABCG2/GAFF2 by reproducing the thermodynamic integration (TI) calculation results. The PB radius parameters of carbon, oxygen, sulfur, phosphorus, chloride, bromide and iodine, were adjusted. New atom types,on,oi,hn1,hn2,hn3, were introduced to further improve the fitting performance. Then, we tuned the parameters in the nonpolar SFE model using the experimental SFE data and the PB calculation results. By adopting the new radius parameters and new nonpolar SFE model, the root mean square error (RMSE) of the SFE calculation for the 544 molecules decreased from 2.38 to 1.05 kcal/mol. Finally, the new radius parameters were applied in the prediction of protein‐ligand binding free energies using the MM‐PBSA method. For the eight systems tested, we could observe higher correlation between the experiment data and calculation results and smaller prediction errors for the absolute binding free energies, demonstrating that our new radius parameters can improve the free energy calculation using the MM‐PBSA method.

     
    more » « less
  3. Cell-free communication has the potential to significantly improve grant-free transmission in massive machine-type communication, wherein multiple access points jointly serve a large number of user equipments to improve coverage and spectral efficiency. In this paper, we propose a novel framework for joint active user detection (AUD), channel estimation (CE), and data detection (DD) for massive grant-free transmission in cell-free systems. We formulate an optimization problem for joint AUD, CE, and DD by considering both the sparsity of the data matrix, which arises from intermittent user activity, and the sparsity of the effective channel matrix, which arises from intermittent user activity and large-scale fading. We approximately solve this optimization problem with a box-constrained forward-backward splitting algorithm, which significantly improves AUD, CE, and DD performance. We demonstrate the effectiveness of the proposed framework through simulation experiments. 
    more » « less
  4. Free chlorine and free bromine ( e.g. , HOCl and HOBr) are employed as disinfectants in a variety of aqueous systems, including drinking water, wastewater, ballast water, recreational waters, and cleaning products. Yet, the most widely used methods for quantifying free halogens, including those employing N , N -diethyl- p -phenylenediamine (DPD), cannot distinguish between HOCl and HOBr. Herein, we report methods for selectively quantifying free halogens in a variety of aqueous systems using 1,3,5-trimethoxybenzene (TMB). At near-neutral pH, TMB reacted on the order of seconds with HOCl, HOBr, and inorganic bromamines to yield halogenated products that were readily quantified by liquid chromatography or, following liquid–liquid extraction, gas chromatography-mass spectrometry (GC-MS). The chlorinated and brominated products of TMB were stable, and their molar concentrations were used to calculate the original concentrations of HOCl (method quantitation limit (MQL) by GC-MS = 15 nmol L −1 = 1.1 μg L −1 as Cl 2 ) and HOBr (MQL by GC-MS = 30 nmol L −1 = 2 μg L −1 as Cl 2 ), respectively. Moreover, TMB derivatization was efficacious for quantifying active halogenating agents in drinking water, pool water, chlorinated surface waters, and simulated spa waters treated with 1-bromo-3-chloro-5,5-dimethylhydantoin. TMB was also used to quantify bromide as a trace impurity in 20 nominally bromide-free reagents (following oxidation of bromide by HOCl to HOBr). Several possible interferents were tested, and iodide was identified as impeding accurate quantitation of HOCl and HOBr. Overall, compared to the DPD method, TMB can provide lower MQLs, larger linear ranges, and selectivity between HOCl and HOBr. 
    more » « less