skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, March 22 until 6:00 AM ET on Saturday, March 23 due to maintenance. We apologize for the inconvenience.


Title: Prediction of Damage Initiation and Simulation of Damage Propagation in 3D Woven Composites during Processing
Some configurations of 3D woven composites are known to be susceptible to processing induced damage in the form of microcracks that develop in the polymer matrix during curing. The microcracking is believed to originate from high residual stresses that develop due to a significant mismatch in the coefficients of thermal expansion between the constituent materials. In this paper, we investigate the applicability of several commonly used stress-based failure criteria for glassy polymers – the von Mises, the Bauwens (Drucker-Prager), the parabolic stress, and the dilatational strain energy density. We study the microcracking phenomenon on the example of the one-to-one orthogonal configuration of the epoxy matrix/carbon fiber 3D woven composites. This configuration is characterized by the high level of the throughthickness reinforcement which appears to exacerbate the matrix damage. The investigation is based on a high-fidelity mesoscale finite element model of an orthogonally reinforced 3D woven composite. We simulate the material’s response to the uniform temperature drop from the curing to room temperature and compare the results of the simulation with the X-ray computed microtomography. We conclude that the curing induced matrix failure is well predicted by the parabolic stress criterion with a proper choice of the material constants. Initiation and propagation of this failure are simulated via sequential deactivation of the elements exceeding the allowable equivalent stress.  more » « less
Award ID(s):
1662098
NSF-PAR ID:
10060806
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the American Society for Composites Technical Conference
ISSN:
1084-7243
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. There are several possible mechanisms of failure of glassy polymers that can be activated by different states of stress in the material. They are reflected in the various failure criteria used to predict initiation of damage in the polymer based on the components of stress tensor. We investigated the applicability of several popular failure criteria (the von Mises, the Drucker-Prager, the parabolic stress, and the dilatational strain energy density) to predict processing-induced damage due to cooling after curing observed in 3D woven composites with high level of through-thickness reinforcement. We developed high-fidelity mesoscale finite element models of orthogonally reinforced carbon/epoxy composites and predicted their response to the uniform temperature drop from the curing to room temperature. Comparison of the simulation results with the X-ray computed microtomography indicates that matrix failure caused by the difference in thermal expansion coefficients of carbon fiber and epoxy resin is well predicted by the dilatational strain energy criterion. Initiation and propagation of this failure was numerically investigated using sequential deactivation of elements exceeding the allowable equivalent stress. 
    more » « less
  2. null (Ed.)
    Manufacturing-induced residual stresses in carbon/epoxy 3D woven composites arise during cooling after curing due to a large difference in the coefficients of thermal expansion between the carbon fibers and the epoxy matrix. The magnitudes of these stresses appear to be higher in composites with high throughthickness reinforcement and in some cases are sufficient to lead to matrix cracking. This paper presents a numerical approach to simulation of development of manufacturing-induced residual stresses in an orthogonal 3D woven composite unit cell using finite element analysis. The proposed mesoscale modeling combines viscoelastic stress relaxation of the epoxy matrix and realistic reinforcement geometry (based on microtomography and fabric mechanics simulations) and includes imaginginformed interfacial (tow/matrix) cracks. Sensitivity of the numerical predictions to reinforcement geometry and presence of defects is discussed. To validate the predictions, blind hole drilling is simulated, and the predicted resulting surface displacements are compared to the experimentally measured values. The validated model provides an insight into the volumetric distribution of residual stresses in 3D woven composites. The presented approach can be used for studies of residual stress effects on mechanical performance of composites and strategies directed at their mitigation. 
    more » « less
  3. Intrinsic residual stresses in woven composites result from the coefficient of thermal expansion mismatch between the fibers and the matrix. Extrinsic residual stresses result from large scale thermal gradients during curing and cooling. Intrinsic residual stresses in 3D woven composites are sometimes severe enough to cause micro-cracking in the matrix. They are also expected to impact the fatigue resistance and the impact resistance. To the best of our knowledge, there have been no spatially resolved measurements of the intrinsic residual stress field as a function of position in the repeating weave pattern. We used digital image correlation (DIC) and electronic speckle pattern interferometry (ESPI) to measure the surface displacement field resulting from drilling a 1 mm diameter hole at four selected locations in two different 3D woven composite architectures that represent low and high through-the-thickness constraint. The two methods are used because the displacements sometimes on the lower end of the resolution for the DIC method and the displacement gradients are sometimes too steep to resolve the fringes for the ESPI method. Finite element models constructed with realistic fiber geometry using Dynamic Fabric Mechanic Analyzer software were utilized to estimate the residual stress field from cooling from the curing temperature. Holes were manually inserted by deactivating the elements in the hole region and the resultant displacement fields were compared to the measurements. In general, the measured displacement fields were lower in magnitude than the model predictions. In some cases, the sign of the predicted displacement field is opposite to the observed field which could be attributed to differences between the actual hole location and the hole in the model. 
    more » « less
  4. In this paper, the effect of matrix viscoelasticity on the development of residual stresses in 3D woven composites is investigated using Finite Element Analysis. Based on experimental observations, it is hypothesized, that the stresses develop mainly due to the difference in the coefficients of thermal expansion between the fiber reinforcement and the matrix. The model considered is a “1x1 orthogonal” 3D woven composite unit cell that is generated using x-ray computed microtomography data. In this study, cooling after curing is considered under the assumption of zero stress at the beginning of the cooling. In addition to the full time- and temperature-dependent viscoelastic formulation, the applicability of two simplified constitutive methods, elastic and variable time pseudoviscoelastic, is investigated. It is observed that the pseudo-viscoelastic method predicts similar cumulative stress distribution (Von Mises and Hydrostatic) compared to the full viscoelastic results. The elastic model presented the highest stress values while the full viscoelastic model presented the lowest stress values. 
    more » « less
  5. null (Ed.)
    3D woven composites are well known for their high strength, dimensional stability, delamination, and impact resistance. They are often used in aerospace, energy, and automotive industries where material parts can experience harsh service conditions including substantial variations in temperature. This may lead to significant thermal deformations and thermally-induced stresses in the material. Additionally, 3D woven composites are often produced using resin transfer molding (RTM) technique which involves curing the epoxy resin at elevated temperatures leading to accumulation of the processing-induced residual stress. Thus, understanding of effective thermal behavior of 3D woven composites is essential for their successful design and service. In this paper, the effective thermal properties of 3D woven carbon-epoxy composite materials are estimated using mesoscale finite element models previously developed for evaluation of the manufacturing-induced residual stresses. We determine effective coefficients of thermal expansion (CTEs) of the composites in terms of the known thermal and mechanical properties of epoxy resin and carbon fibers. We investigate how temperature sensitivity of the thermal and mechanical properties of the epoxy influences the overall thermal properties of the composite. The simulations are performed for different composite reinforcement morphologies including ply-to-ply and orthogonal. It is shown that even linear dependence of epoxy’s stiffness and CTE on temperature results in a nonlinear dependence on temperature of the overall composite’s CTE. 
    more » « less