skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Deconstruction of a plant-arthropod community reveals influential plant traits with nonlinear effects on arthropod assemblages
Award ID(s):
1638793 1638768
PAR ID:
10061344
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Functional Ecology
Volume:
32
Issue:
5
ISSN:
0269-8463
Page Range / eLocation ID:
1317 to 1328
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. Abstract In lowland tropical forests, “arthropod rain” (i.e., arthropods falling from the canopy to the understory), represents a potentially important terrestrial nutrient flux.We investigated the composition, abundance, biomass and environmental drivers of arthropod rain on Barro Colorado Island, Panama. Pairs of traps (pan traps and pole traps) placed 1 m above the ground, respectively, collected fallen arthropods and arthropods potentially climbing to the canopy.Average (±SE) arthropod biomass in pan traps was dominated by Hymenoptera (primarily ants; 0.501 ± 0.023 mg dry mass m−2 day−1) and Lepidoptera larvae (0.228 ± 0.001 mg m−2 day−1). Total dry biomass in pan traps was 0.891 ± 0.033 mg m−2 day−1; thus, ca. 27 kg of arthropod biomass rains into the understory per km2per month during the wet season in this forest. This equates to ca. 3 million mid‐sized ants falling from the canopy per day on BCI as a whole.Arthropod abundance in pan traps, especially ants and spiders, increased marginally with the increasing number of high‐wind events. By contrast, arthropod biomass showed no relationship with wind or rain.Arthropod abundance was higher in pole traps than in pan traps and was dominated by Collembola and Acari. Compositional overlap between pan and pole trap contents suggests that some fallen arboreal arthropods regularly return to the canopy.These findings illustrate an understudied pathway linking canopy and understory food webs within tropical forests, and the complex interactions between environmental conditions and arthropod rain. 
    more » « less
  3. null (Ed.)
    Arthropod herbivores cause substantial economic costs that drive an increasing need to develop environmentally sustainable approaches to herbivore control. Increasing plant diversity is expected to limit herbivory by altering plant-herbivore and predator-herbivore interactions, but the simultaneous influence of these interactions on herbivore impacts remains unexplored. We compiled 487 arthropod food webs in two long-running grassland biodiversity experiments in Europe and North America to investigate whether and how increasing plant diversity can reduce the impacts of herbivores on plants. We show that plants lose just under half as much energy to arthropod herbivores when in high-diversity mixtures versus monocultures and reveal that plant diversity decreases effects of herbivores on plants by simultaneously benefiting predators and reducing average herbivore food quality. These findings demonstrate that conserving plant diversity is crucial for maintaining interactions in food webs that provide natural control of herbivore pests. 
    more » « less
  4. Podostemaceae are a unique family of aquatic angiosperms found in river rapids and waterfalls throughout southern Asia, Africa, and the Americas. Podostemaceae are understudied, and consequently, the arthropods associated with these plants are not well known. We sought to expand knowledge of arthropod-Podostemaceae associations to better understand the impact of these plants on aquatic ecosystems and biodiversity. We examined samples of Podostemaceae collected between 1998 and 2007 from Brazil, Costa Rica, Suriname, and Venezuela for arthropods even though these samples were not collected with the intent to investigate arthropod-Podostemaceae associations. We examined 15 samples of Podostemaceae, including 10 species never evaluated for arthropod associations, and found over 9000 arthropods representing 12 different orders. The most abundant orders were Diptera (77.88%), Trichoptera (12.90%), Coleoptera (3.35%), and Lepidoptera (2.42%). We found several arthropods not previously reported from Podostemaceae, including Collembola and Acari, documented several instances of insects boring into plant tissues, and provide the first report of an insect-induced gall on Ceratolacis pedunculatum C.T. Philbrick, Novelo & Irgang. 
    more » « less