Phytophthora root rot, caused by oomycete pathogens in the Phytophthora genus, poses a significant threat to soybean productivity. While resistance mechanisms against
Despite the severe impacts of the
- PAR ID:
- 10061354
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Molecular Ecology
- Volume:
- 27
- Issue:
- 14
- ISSN:
- 0962-1083
- Page Range / eLocation ID:
- p. 2986-3000
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Phytophthora sojae have been extensively studied in soybean, the molecular basis underlying immune responses toPhytophthora sansomeana remains unclear. In this study, we investigated transcriptomic and epigenetic responses of two resistant (Colfax and NE2701) and two susceptible (Williams 82 and Senaki) soybean lines at four time points (2, 4, 8, and 16 h post inoculation [hpi]) afterP. sansomeana inoculation. Comparative transcriptomic analyses revealed a greater number of differentially expressed genes (DEGs) upon pathogen inoculation in resistant lines, particularly at 8 and 16 hpi. These DEGs were predominantly associated with defense response, ethylene, and reactive oxygen species‐mediated defense pathways. Moreover, DE transposons were predominantly upregulated after inoculation, and more of them were enriched near genes in Colfax than other soybean lines. Notably, we identified a long non‐coding RNA (lncRNA) within the mapped region of the resistance gene that exhibited exclusive upregulation in the resistant lines after inoculation, potentially regulating two flankingLURP‐one‐related genes. Furthermore, DNA methylation analysis revealed increased CHH (where H = A, T, or C) methylation levels in lncRNAs after inoculation, with delayed responses in Colfax compared to Williams 82. Overall, our results provide comprehensive insights into soybean responses toP. sansomeana , highlighting potential roles of lncRNAs and epigenetic regulation in plant defense. -
Summary Vernalization accelerates flowering after prolonged winter cold. Transcriptional and epigenetic changes are known to be involved in the regulation of the vernalization response. Despite intensive applications of next‐generation sequencing in diverse aspects of plant research, genome‐wide transcriptome and epigenome profiling during the vernalization response has not been conducted. In this work, to our knowledge, we present the first comprehensive analyses of transcriptomic and epigenomic dynamics during the vernalization process in
Arabidopsis thaliana . Six major clusters of genes exhibiting distinctive features were identified. Temporary changes in histone H3K4me3 levels were observed that likely coordinate photosynthesis and prevent oxidative damage during cold exposure. In addition, vernalization induced a stable accumulation of H3K27me3 over genes encoding many development‐related transcription factors, which resulted in either inhibition of transcription or a bivalent status of the genes. Lastly,FLC ‐like andVIN3 ‐like genes were identified that appear to be novel components of the vernalization pathway. -
Abstract Exposure to environmental toxicants during preconception has been shown to affect offspring health and epigenetic mechanisms such as DNA methylation are hypothesized to be involved in adverse outcomes. However, studies addressing the effects of exposure to environmental toxicants during preconception on epigenetic changes in gametes are limited. The objective of this study is to determine the effect of preconceptional exposure to a dioxin-like polychlorinated biphenyl (3,3′,4,4′,5-pentachlorobiphenyl [PCB126]) on DNA methylation and gene expression in testis. Adult zebrafish were exposed to 3 and 10 nM PCB126 for 24 h and testis tissue was sampled at 7 days postexposure for histology, DNA methylation, and gene expression profiling. Reduced representation bisulfite sequencing revealed 37 and 92 differentially methylated regions (DMRs) in response to 3 and 10 nM PCB126 exposures, respectively. Among them, 19 DMRs were found to be common between both PCB126 treatment groups. Gene ontology (GO) analysis of DMRs revealed that enrichment of terms such as RNA processing, iron-sulfur cluster assembly, and gluconeogenesis. Gene expression profiling showed differential expression of 40 and 1621 genes in response to 3 and 10 nM PCB126 exposures, respectively. GO analysis of differentially expressed genes revealed enrichment of terms related to xenobiotic metabolism, oxidative stress, and immune function. There is no overlap in the GO terms or individual genes between DNA methylation and RNA sequencing results, but functionally many of the altered pathways have been shown to cause spermatogenic defects.
-
Abstract Nondestructive plant phenotyping forms a key technique for unraveling molecular processes underlying plant development and response to the environment. While the emergence of high-throughput phenotyping facilities can further our understanding of plant development and stress responses, their high costs greatly hinder scientific progress. To democratize high-throughput plant phenotyping, we developed sets of low-cost image- and weight-based devices to monitor plant shoot growth and evapotranspiration. We paired these devices to a suite of computational pipelines for integrated and straightforward data analysis. The developed tools were validated for their suitability for large genetic screens by evaluating a cowpea (Vigna unguiculata) diversity panel for responses to drought stress. The observed natural variation was used as an input for a genome-wide association study, from which we identified nine genetic loci that might contribute to cowpea drought resilience during early vegetative development. The homologs of the candidate genes were identified in Arabidopsis (Arabidopsis thaliana) and subsequently evaluated for their involvement in drought stress by using available T-DNA insertion mutant lines. These results demonstrate the varied applicability of this low-cost phenotyping system. In the future, we foresee these setups facilitating the identification of genetic components of growth, plant architecture, and stress tolerance across a wide variety of plant species.
-
Summary Integration of
Agrobacterium tumefaciens transferred DNA (T‐DNA) into the plant genome is the last step required for stable plant genetic transformation. The mechanism of T‐DNA integration remains controversial, although scientists have proposed the participation of various nonhomologous end‐joining (NHEJ) pathways. Recent evidence suggests that inArabidopsis , DNA polymerase θ (PolQ) may be a crucial enzyme involved in T‐DNA integration.We conducted quantitative transformation assays of wild‐type and
polQ mutantArabidopsis and rice, analyzed T‐DNA/plant DNA junction sequences, and (forArabidopsis ) measured the amount of integrated T‐DNA in mutant and wild‐type tissue.Unexpectedly, we were able to generate stable transformants of all tested lines, although the transformation frequency of
polQ mutants wasc. 20% that of wild‐type plants. T‐DNA/plant DNA junctions from these transformed rice andArabidopsis polQ mutants closely resembled those from wild‐type plants, indicating that loss of PolQ activity does not alter the characteristics of T‐DNA integration events.polQ mutant plants show growth and developmental defects, perhaps explaining previous unsuccessful attempts at their stable transformation.We suggest that either multiple redundant pathways function in T‐DNA integration, and/or that integration requires some yet unknown pathway.