skip to main content


Title: Tundra be dammed: Beaver colonization of the Arctic
Abstract

Increasing air temperatures are changing the arctic tundra biome. Permafrost is thawing, snow duration is decreasing, shrub vegetation is proliferating, and boreal wildlife is encroaching. Here we present evidence of the recent range expansion of North American beaver (Castor canadensis) into the Arctic, and consider how this ecosystem engineer might reshape the landscape, biodiversity, and ecosystem processes. We developed a remote sensing approach that maps formation and disappearance of ponds associated with beaver activity. Since 1999, 56 new beaver pond complexes were identified, indicating that beavers are colonizing a predominantly tundra region (18,293 km2) of northwest Alaska. It is unclear how improved tundra stream habitat, population rebound following overtrapping for furs, or other factors are contributing to beaver range expansion. We discuss rates and likely routes of tundra beaver colonization, as well as effects on permafrost, stream ice regimes, and freshwater and riparian habitat. Beaver ponds and associated hydrologic changes are thawing permafrost. Pond formation increases winter water temperatures in the pond and downstream, likely creating new and more varied aquatic habitat, but specific biological implications are unknown. Beavers create dynamic wetlands and are agents of disturbance that may enhance ecosystem responses to warming in the Arctic.

 
more » « less
NSF-PAR ID:
10061719
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Change Biology
Volume:
24
Issue:
10
ISSN:
1354-1013
Page Range / eLocation ID:
p. 4478-4488
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In recent decades, beavers have reportedly extended their range from the boreal forest into the arctic tundra, altering tundra streams and surrounding permafrost at local to regional scales. In lower latitudes, beaver damming can convert streams, backwaters, and lake outlets into connected ponds, which in turn can change the course of channels, temperature of streams, sediment loads, energy exchange, aquatic habitat diversity and nutrient cycling, and riparian vegetation. In the Arctic, effects of beavers may include enhanced thawing of permafrost, increased stream temperatures, and changes in seasonal ice in streams, as well as complex ecosystem responses. This study will 1) document movement of beavers from the forest into tundra regions, 2) understand how stream engineering wrought by beavers will change the arctic tundra landscape and streams, and 3) predict how beavers will expand into tundra regions and alter stream and adjacent ecosystems. Results will be of interest to local communities and resource managers, and the team of investigators will convene a scientist and stakeholder workshop in Fairbanks, Alaska to synthesize observations, compare results from studies in temperate ecosystems, and clarify impacts of beaver expansion unique to the tundra biome. In August 2021 we used a ground penetrating radar (GPR) to image the subsurface surrounding beaver ponds in a tundra region around Nome, Alaska. The general objective was to determine if heat from new beaver ponds are impacting permafrost. We used a Mala GX GPR (Mala Ground Explorer GPR) with a 450mhz antenna and an integrated DGPS (differential global positioning system). GPS (global positioning system) location data is stored in the .cor file. 
    more » « less
  2. In recent decades, beavers have reportedly extended their range from the boreal forest into the arctic tundra, altering tundra streams and surrounding permafrost at local to regional scales. In lower latitudes, beaver damming can convert streams, backwaters, and lake outlets into connected ponds, which in turn can change the course of channels, temperature of streams, sediment loads, energy exchange, aquatic habitat diversity and nutrient cycling, and riparian vegetation. In the Arctic, effects of beavers may include enhanced thawing of permafrost, increased stream temperatures, and changes in seasonal ice in streams, as well as complex ecosystem responses. This study will 1) document movement of beavers from the forest into tundra regions, 2) understand how stream engineering wrought by beavers will change the arctic tundra landscape and streams, and 3) predict how beavers will expand into tundra regions and alter stream and adjacent ecosystems. Results will be of interest to local communities and resource managers, and the team of investigators will convene a scientist and stakeholder workshop in Fairbanks, Alaska to synthesize observations, compare results from studies in temperate ecosystems, and clarify impacts of beaver expansion unique to the tundra biome. In March and April 2022 we used a ground penetrating radar (GPR) to image the subsurface surrounding beaver ponds in a tundra region around Nome, Alaska. We used a Mala GX GPR (Mala Ground Explorer GPR) with a 160 megahertz (mhz) antenna and an integrated DGPS (differential global positioning system). GPS (global positioning system) location data is stored in the .cor file. 
    more » « less
  3. Abstract

    In recent decades the habitat of North American beaver (Castor canadensis) has expanded from boreal forests into Arctic tundra ecosystems. Beaver ponds in Arctic watersheds are known to alter stream biogeochemistry, which is likely coupled with changes in the activity and composition of microbial communities inhabiting beaver pond sediments. We investigated bacterial, archaeal, and fungal communities in beaver pond sediments along tundra streams in northwestern Alaska (AK), USA and compared them to those of tundra lakes and streams in north‐central Alaska that are unimpacted by beavers.β‐glucosidase activity assays indicated higher cellulose degradation potential in beaver ponds than in unimpacted streams and lakes within a watershed absent of beavers. Beta diversity analyses showed that dominant lineages of bacteria and archaea in beaver ponds differed from those in tundra lakes and streams, but dominant fungal lineages did not differ between these sample types. Beaver pond sediments displayed lower relative abundances of Crenarchaeota and Euryarchaeota archaea and of bacteria from typically anaerobic taxonomic groups, suggesting differences in rates of fermentative organic matter (OM) breakdown, syntrophy, and methane generation. Beaver ponds also displayed low relative abundances of Chytridiomycota (putative non‐symbiotic) fungi and high relative abundances of ectomycorrhizal (plant symbionts) Basidiomycota fungi, suggesting differences in the occurrence of plant and fungi mutualistic interactions. Beaver ponds also featured microbes with taxonomic identities typically associated with the cycling of nitrogen and sulfur compounds in higher relative abundances than tundra lakes and streams. These findings help clarify the microbiological implications of beavers expanding into high latitude regions.

     
    more » « less
  4. Abstract

    Beaver engineering in the Arctic tundra induces hydrologic and geomorphic changes that are favorable to methane (CH4) production. Beaver-mediated methane emissions are driven by inundation of existing vegetation, conversion from lotic to lentic systems, accumulation of organic rich sediments, elevated water tables, anaerobic conditions, and thawing permafrost. Ground-based measurements of CH4emissions from beaver ponds in permafrost landscapes are scarce, but hyperspectral remote sensing data (AVIRIS-NG) permit mapping of ‘hotspots’ thought to represent locations of high CH4emission. We surveyed a 429.5 km2area in Northwestern Alaska using hyperspectral airborne imaging spectroscopy at ∼5 m pixel resolution (14.7 million observations) to examine spatial relationships between CH4hotspots and 118 beaver ponds. AVIRIS-NG CH4hotspots covered 0.539% (2.3 km2) of the study area, and were concentrated within 30 m of waterbodies. Comparing beaver ponds to all non-beaver waterbodies (including waterbodies >450 m from beaver-affected water), we found significantly greater CH4hotspot occurrences around beaver ponds, extending to a distance of 60 m. We found a 51% greater CH4hotspot occurrence ratio around beaver ponds relative to nearby non-beaver waterbodies. Dammed lake outlets showed no significant differences in CH4hotspot ratios compared to non-beaver lakes, likely due to little change in inundation extent. The enhancement in AVIRIS-NG CH4hotspots adjacent to beaver ponds is an example of a new disturbance regime, wrought by an ecosystem engineer, accelerating the effects of climate change in the Arctic. As beavers continue to expand into the Arctic and reshape lowland ecosystems, we expect continued wetland creation, permafrost thaw and alteration of the Arctic carbon cycle, as well as myriad physical and biological changes.

     
    more » « less
  5. Beavers build dams that change the way water moves between streams, lakes, and the land. In Alaska, beavers are moving north from the forests into the Arctic tundra. When beavers build dams in the Arctic, they cause frozen soil, called permafrost, to thaw. Scientists are studying how beavers and the thawing of permafrost are impacting streams and rivers in Alaska’s national parks. For example, permafrost thaw from beavers can add harmful substances like mercury to streams. Mercury can be taken up by stream food webs, including fish, which then become unhealthy to eat. Permafrost thaw can also move carbon (from dead plants) to beaver ponds. When this carbon decomposes, it can be released from beaver ponds into the air as greenhouse gases, which cause Earth’s climate to warm. Scientists are trying to keep up with these busy beavers to better understand how they are changing Arctic landscapes and Earth’s climate.

     
    more » « less