skip to main content


Title: Capacitively Coupled Hybrid Ion Gel and Carbon Nanotube Thin‐Film Transistors for Low Voltage Flexible Logic Circuits
Abstract

The lamination of a high‐capacitance ion gel dielectric layer onto semiconducting carbon nanotube (CNT) thin‐film transistors (TFTs) that are bottom‐gated with a low‐capacitance polymer dielectric layer drastically reduces the operating voltage of the devices resulting from the capacitive coupling effect between the two dielectric layers sandwiching the CNT channel. As the CNT channel has a network structure, only a compact area of ion gel is required to make the capacitive coupling effect viable, unlike the planar channels of previously reported transistors that required a substantially larger area of ion gel dielectric layer to induce the coupling effect. The capacitively coupled CNT TFTs possess superlative electrical characteristics such as high carrier mobilities (42.0 cm2(Vs)−1for holes and 59.1 cm2(Vs)−1for electrons), steep subthreshold swings (160 mV dec−1for holes and 100 mV dec−1for electrons), and low gate leakage currents (<1 nA). These devices can be further integrated to form complex logic circuits on flexible substrates with high mechanical resilience. The layered geometry of the device coupled with scalable solution‐based fabrication has significant potential for large‐scale flexible electronics.

 
more » « less
NSF-PAR ID:
10061727
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
28
Issue:
34
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The minimization of the subthreshold swing (SS) in transistors is essential for low‐voltage operation and lower power consumption, both critical for mobile devices and internet of things (IoT) devices. The conventional metal‐oxide‐semiconductor field‐effect transistor requires sophisticated dielectric engineering to achieve nearly ideal SS (60 mV dec−1at room temperature). However, another type of transistor, the junction field‐effect transistor (JFET) is free of dielectric layer and can reach the theoretical SS limit without complicated dielectric engineering. The construction of a 2D SnSe/MoS2van der Waals (vdW) heterostructure‐based JFET with nearly ideal SS is reported. It is shown that the SnSe/MoS2vdW heterostructure exhibits excellent p–n diode rectifying characteristics with low saturate current. Using the SnSe as the gate and MoS2as the channel, the SnSe/MoS2vdW heterostructure exhibit well‐behavioured n‐channel JFET characteristics with a small pinch‐off voltageVPof −0.25 V, nearly ideal subthreshold swing SS of 60.3 mV dec−1and high ON/OFF ratio over 106, demonstrating excellent electronic performance especially in the subthreshold regime.

     
    more » « less
  2.  
    more » « less
  3. Abstract

    Here, a new approach to the layer‐by‐layer solution‐processed fabrication of organic/inorganic hybrid self‐assembled nanodielectrics (SANDs) is reported and it is demonstrated that these ultrathin gate dielectric films can be printed. The organic SAND component, named P‐PAE, consists of polarizable π‐electron phosphonic acid‐based units bound to a polymeric backbone. Thus, the new polymeric SAND (PSAND) can be fabricated either by spin‐coating or blade‐coating in air, by alternating P‐PAE, a capping reagent layer, and an ultrathin ZrOx layer. The new PSANDs thickness vary from 6 to 15 nm depending on the number of organic‐ZrOx bilayers, exhibit tunable film thickness, well‐defined nanostructures, large electrical capacitance (up to 558 nF cm−2), and good insulating properties (leakage current densities as low as 10−6A cm−2). Organic thin‐film transistors that are fabricated with representative p‐/n‐type organic molecular/polymeric semiconducting materials, function well at low voltages (<3.0 V). Furthermore, flexible TFTs fabricated with PSAND exhibit excellent mechanical flexibility and good stress stability, offering a promising route to low operating voltage flexible electronics. Finally, printable PSANDs are also demonstrated and afford TFTs with electrical properties comparable to those achieved with the spin‐coated PSAND‐based devices.

     
    more » « less
  4. Abstract

    Highly sensitive force sensors of piezoelectric zinc oxide (ZnO) dual‐gate thin film transistors (TFTs) are reported together with an analytical model that elucidates the physical origins of their response. The dual‐gate TFTs are fabricated on a polyimide substrate and exhibited a field effect mobility of ≈5 cm2V−1s−1,Imax/Iminratio of 107, and a subthreshold slope of 700 mV dec−1, and demonstrated static and transient current changes under external forces with varying amplitude and polarity in different gate bias regimes. To understand the current modulation of the dual‐gate TFT with independently biased top and bottom gates, an analytical model is developed. The model includes accumulation channels at both surfaces and a bulk channel within the film and accounts for the force‐induced piezoelectric charge density. The microscopic piezoelectric response that modulates the energy‐band edges and correspondent current–voltage characteristics are accurately portrayed by this model. Finally, the field‐tunable force response in single TFT is demonstrated as a function of independent bias for the top and bottom gates with a force response range from −0.29 to 22.7 nA mN−1. This work utilizes intuitive analytical models to shed light on the correlation between the material properties with the force response in piezoelectric TFTs.

     
    more » « less
  5. Abstract

    The demand of cost‐effective fabrication of printed flexible transistors has dramatically increased in recent years due to the need for flexible interface devices for various application including e‐skins, wearables, and medical patches. In this study, electrohydrodynamic (EHD) printing processes are developed to fabricate all the components of polymer‐based organic thin film transistors (OTFTs), including source/drain and gate electrodes, semiconductor channel, and gate dielectrics, which streamline the fabrication procedure for flexible OTFTs. The flexible transistors with top‐gate‐bottom‐contact configuration are fabricated by integrating organic semiconductor (i.e., poly(3‐hexylthiophene‐2,5‐diyl) blended with small molecule 2,7‐dioctyl[1]benzothieno[3,2‐b][1]benzothiophene), conductive polymer (i.e., poly (3,4‐ethylenedioxythiophene) polystyrene sulfonate), and ion‐gel dielectric. These functional inks are carefully designed with orthogonal solvents to enable their compatible printing into multilayered flexible OTFTs. The EHD printing process of each functional component is experimentally characterized and optimized. The fully EHD‐printed OTFTs show good electrical performance with mobility of 2.86 × 10−1cm2V−1s−1and on/off ratio of 104, and great mechanical flexibility with small mobility change at bending radius of 6 mm and stable transistor response under hundreds of bending cycles. The demonstrated all printing‐based fabrication process provides a cost‐effective route toward flexible electronics with OTFTs.

     
    more » « less