skip to main content


Title: Laser‐Enabled Processing of Stretchable Electronics on a Hydrolytically Degradable Hydrogel
Abstract

Degradable electronics represent a rapidly emerging field of science and technology with the potential to serve short‐term medical implantation applications where the device disappears once its function is complete. Despite many efforts in developing new types of degradable electronics, many of such systems are nonelastic and incompatible with the dynamic motion of native soft/elastic biological tissues. Herein, a photo‐crosslinkable hydrogel with integrated electronics that are highly stretchable and degradable in liquid environments is demonstrated. The fabrication process takes advantage of facile laser micromachining of conductive patterns directly onto the hydrogel under ambient conditions and permanent hydrogel–hydrogel bonding. The robustness and degradation rate of hydrogel and the laser‐processed encapsulated stretchable circuits is systematically investigated in different solutions under various conditions. Biocompatibility tests with non‐neoplastic cells (HMT 3522 S1) and cancer cells (T4‐2 and MDA‐MB‐231) are performed in 2D and 3D cell culture systems to confirm instead of evaluate the safety of the hydrogel and its byproducts during degradation as well as the zinc metal used in this technology. As a proof of concept, a stretchable hydrogel‐based device that can be used for remote/wireless delivery of thermal energy into the tissue in contact with the hydrogel is fabricated.

 
more » « less
PAR ID:
10061864
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Healthcare Materials
Volume:
7
Issue:
16
ISSN:
2192-2640
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Recent years have witnessed the rapid development of sustainable materials. Along this line, developing biodegradable or recyclable soft electronics is challenging yet important due to their versatile applications in biomedical devices, soft robots, and wearables. Although some degradable bulk hydrogels are directly used as the soft electronics, the sensing performances are usually limited due to the absence of distributed conducting circuits. Here, sustainable hydrogel‐based soft electronics (HSE) are reported that integrate sensing elements and patterned liquid metal (LM) in the gelatin–alginate hybrid hydrogel. The biopolymer hydrogel is transparent, robust, resilient, and recyclable. The HSE is multifunctional; it can sense strain, temperature, heart rate (electrocardiogram), and pH. The strain sensing is sufficiently sensitive to detect a human pulse. In addition, the device serves as a model system for iontophoretic drug delivery by using patterned LM as the soft conductor and electrode. Noncontact detection of nearby objects is also achieved based on electrostatic‐field‐induced voltage. The LM and biopolymer hydrogel are healable, recyclable, and degradable, favoring sustainable applications and reconstruction of the device with new functions. Such HSE with multiple functions and favorable attributes should open opportunities in next‐generation electronic skins and hydrogel machines.

     
    more » « less
  2. In vitro models are valuable tools for applications including understanding cellular mechanisms and drug screening. Hydrogel biomaterials facilitate in vitro models by mimicking the extracellular matrix and in vivo microenvironment. However, it can be challenging for cells to form tissues in hydrogels that do not degrade. In contrast, if hydrogels degrade too much or too quickly, tissue models may be difficult to assess in a high throughput manner. In this paper, we present a poly(allylamine) (PAA) based synthetic hydrogel system which can be tuned to control the mechanical and chemical cues provided by the hydrogel scaffold. PAA is a polycation with several biomedical applications, including the delivery of small molecules, nucleic acids, and proteins. Based on PAA and poly(ethylene glycol) (PEG), we developed a synthetic non-degradable system with potential applications for long-term cultures. We then created a second set of gels that combined PAA with poly- l -lysine (PLL) to generate a library of semi-degradable gels with unique degradation kinetics. In this work, we present the hydrogel systems’ synthesis, characterization, and degradation profiles along with cellular data demonstrating that a subset of gels supports the formation of endothelial cell cord-like structures. 
    more » « less
  3. Abstract

    3D‐printing is emerging as a technology to introduce microchannels into hydrogels, for the perfusion of engineered constructs. Although numerous techniques have been developed, new techniques are still needed to obtain the complex geometries of blood vessels and with materials that permit desired cellular responses. Here, a printing process where a shear‐thinning and self‐healing hydrogel “ink” is injected directly into a “support” hydrogel with similar properties is reported. The support hydrogel is further engineered to undergo stabilization through a thiol‐ene reaction, permitting (i) the washing of the ink to produce microchannels and (ii) tunable properties depending on the crosslinker design. When adhesive peptides are included in the support hydrogel, endothelial cells form confluent monolayers within the channels, across a range of printed configurations (e.g., straight, stenosis, spiral). When protease‐degradable crosslinkers are used for the support hydrogel and gradients of angiogenic factors are introduced, endothelial cells sprout into the support hydrogel in the direction of the gradient. This printing approach is used to investigate the influence of channel curvature on angiogenic sprouting and increased sprouting is observed at curved locations. Ultimately, this technique can be used for a range of biomedical applications, from engineering vascularized tissue constructs to modeling in vitro cultures.

     
    more » « less
  4. Abstract

    Multi‐layer electrical interconnects are critical for the development of integrated soft wearable electronic systems, in which functional devices from different layers need to be connected together by vertical interconnects. In this work, electrohydrodynamic (EHD) printing technology is studied to achieve multi‐layer flexible and stretchable electronics by direct printing vertical interconnects as vertical interconnect accesses (VIAs) using a low‐melting‐point metal alloy. The EHD printed metallic vertical interconnection represents a promising way for the direct fabrication of multilayer integrated electronics with metallic conductivity and excellent flexibility and stretchability. By controlling the printing conditions, vertical interconnects that can bridge different heights can be fabricated. To achieve reliable VIA connections under bending and stretching conditions, an epoxy protective structure is printed around the VIA interconnects to form a core‐shell structure. A stable electrical response is achieved under hundreds of bending cycles and during stretching/releasing cycles in a large range of tensile strain (0–40%) for the printed conductors with VIA interconnects. A few multi‐layer devices, including a multiple layer heater, and a pressure‐based touch panel are fabricated to demonstrate the capability of the EHD printing for the direct fabrication of vertical metallic VIA interconnects for flexible and stretchable devices.

     
    more » « less
  5. This paper studies a polymer network in which crosslinks are degradable but polymer chains are not. We show that entanglements markedly enhance the mechanical properties of the polymer network before degradation and slow down degradation. We synthesize polyacrylamide hydrogels with disulfide crosslinks. In a precursor of a low water-to-monomer molar ratio and low crosslinker-to-monomer molar ratio, the monomers are crowded and the resulting polymer chains are long, so that the entanglements greatly outnumber crosslinks. The as-synthesized hydrogels are submerged in pure water to swell to equilibrium. We show that entanglements enhance the swell resistance of the hydrogel, as well as stiffen and toughen the hydrogel. We further show that entanglements slow down degradation when the hydrogel is submerged in an aqueous solution of cysteine. This work demonstrates that entanglements substantially expand the properties space of degradable polymers. 
    more » « less