Fabrication and acoustic performance of a microelectromechanical systems (MEMS) microphone are presented. The microphone utilizes an unusual electrostatic sensing scheme that causes the sensing electrode to move away, or levitate from the biasing electrode as the bias voltage is applied. This approach differs from existing electrostatic sensors and completely avoids the usual collapse, or pull-in instability. In this study, our goal is to fabricate a MEMS microphone whose sensitivity could be improved simply by increasing the bias voltage, without suffering from pull-in instability. The microphone is tested in our anechoic chamber and a read-out circuit is used to obtain electrical signals in response to sound pressure at various bias voltages. Experimental results show that the sensitivity increases approximately linearly with bias voltage for bias voltages from 40 volts to 100 volts. The ability to design electrostatic sensors without concerns about pull-in failure can enable a wide-range of promising sensor designs. 
                        more » 
                        « less   
                    
                            
                            A MEMS Microphone Using Repulsive Force Sensors
                        
                    
    
            We present a MEMS microphone that converts the mechanical motion of a diaphragm, generated by acoustic waves, to an electrical output voltage by capacitive fingers. The sensitivity of a microphone is one of the most important properties of its design. The sensitivity is proportional to the applied bias voltage. However, it is limited by the pull-in voltage, which causes the parallel plates to collapse and prevents the device from functioning properly. The presented MEMS microphone is biased by repulsive force instead of attractive force to avoid pull-in instability. A unit module of the repulsive force sensor consists of a grounded moving finger directly above a grounded fixed finger placed between two horizontally seperated voltage fixed fingers. The moving finger experiences an asymmetric electrostatic field that generates repulsive force that pushes it away from the substrate. Because of the repulsive nature of the force, the applied voltage can be increased for better sensitivity without the risk of pull-in failure. To date, the repulsive force has been used to engage a MEMS actuator such as a micro-mirror, but we now apply it for a capacitive sensor. Using the repulsive force can revolutionize capacitive sensors in many applications because they will achieve better sensitivity. Our simulations show that the repulsive force allows us to improve the sensitivity by increasing the bias voltage. The applied voltage and the back volume of a standard microphone have stiffening effects that significantly reduce its sensitivity. We find that proper design of the back volume and capacitive fingers yield promising results without pull-in instability. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1608692
- PAR ID:
- 10061885
- Date Published:
- Journal Name:
- ASME International Design Engineering Technical Conferences
- Page Range / eLocation ID:
- DETC 2016-60171 (13 pages)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            In this paper a novel electrostatic MEMS combined shock sensor and normally-closed switch is presented. The switch uses combined attractive and repulsive forcing to toggle a cantilever beam to and from the pulled-in position. The attractive force is generated through a parallel plate electrode configuration and induces pull-in. The repulsive force is generated through electrostatic levitation from a third electrode and serves to pull the beam out of its pulled-in position. A triboelectric transducer converts impact energy to electrical energy to provide voltage for the third electrode, which temporarily opens the switch if enough impact energy is supplied. Triboelectricity addresses the high voltage requirement for electrostatic levitation. The multi-electrode sensor also addresses the low current output from the generator because it acts as an open circuit between the parallel plate and levitation electrodes. A theoretical model of the switch is derived to analyze stability and the dynamic response of the cantilever. Threshold voltages to pull-in and release the beam through repulsive forcing is calculated. Output voltage plots from a prototype generator under a single impact are applied to the sensor-switch model to demonstrate the working principle of the sensor-switch is feasible.more » « less
- 
            We introduce a capacitive MEMS filter that uses electrostatic levitation for actuation and sensing. The advantage of this electrode configuration is that it does not suffer from the pull-in instability and therefore tremendously high voltages can be applied to this system. A large sensing voltage will produce a large output signal, which boosts the signal to noise ratio. The filter outputs about a 110mV peak-to-peak signal when operated at 175V, and can be boosted to 175mV by increasing the voltage to 250V. Because pull-in is eliminated, voltages much higher than 250V can be applied. An outline of the filter design and operating principle is discussed. A model of the filter is derived and analyzed to show the mechanical response and approximate peak-to-peak signal output. This study shows the feasibility of a capacitive sensor that is based on electrostatic levitation, and outlines the advantages it has over traditional parallel-plate electrode configurations. This design is promising for signal signal processing applications where large strokes are important.more » « less
- 
            Parametric resonances in a repulsive-force MEMS resonator are investigated. The repulsive force is generated through electrostatic fringe fields that arise from a specific electrode configuration. Because of the nature of the electrostatic force, parametric resonance occurs in this system and is predicted using Mathieu’s Equation. Governing equations of motion are solved using numerical shooting techniques and show both parametric and subharmonic resonance at twice the natural frequency. The primary instability tongue for parametric resonance is also mapped. This is of particular interest for MEMS sensors that require high signal-to-noise ratios due to the large oscillation amplitudes associated with parametric resonance.more » « less
- 
            null (Ed.)The goal of this paper is to provide a novel computing approach that can be used to reduce the power consumption, size, and cost of wearable electronics. To achieve this goal, the use of microelectromechanical systems (MEMS) sensors for simultaneous sensing and computing is introduced. Specifically, by enabling sensing and computing locally at the MEMS sensor node and utilizing the usually unwanted pull in/out hysteresis, we may eliminate the need for cloud computing and reduce the use of analog-to-digital converters, sampling circuits, and digital processors. As a proof of concept, we show that a simulation model of a network of three commercially available MEMS accelerometers can classify a train of square and triangular acceleration signals inherently using pull-in and release hysteresis. Furthermore, we develop and fabricate a network with finger arrays of parallel plate actuators to facilitate coupling between MEMS devices in the network using actuating assemblies and biasing assemblies, thus bypassing the previously reported coupling challenge in MEMS neural networks.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    