skip to main content


Title: Convergence in reduced body size, head size, and blood glucose in three island reptiles
NSF-PAR ID:
10062199
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Volume:
8
Issue:
12
ISSN:
2045-7758
Page Range / eLocation ID:
6169 to 6182
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Brain size, brain architecture, and eye size vary extensively in vertebrates. However, the extent to which the evolution of these components is intricately connected remains unclear. Trinidadian killifish,Anablepsoides hartii, are found in sites that differ in the presence and absence of large predatory fish. Decreased rates of predation are associated with evolutionary shifts in brain size; males from sites without predators have evolved a relatively larger brain and eye size than males from sites with predators. Here, we evaluated the extent to which the evolution of brain size, brain structure, and eye size covary in male killifish. We utilized wild‐caught and common garden‐reared specimens to determine whether specific components of the brain have evolved in response to differences in predation and to determine if there is covariation between the evolution of brain size, brain structure, and eye size. We observed consistent shifts in brain architecture in second generation common garden reared, but not wild caught preserved fish. Male killifish from sites that lack predators exhibited a significantly larger telencephalon, optic tectum, cerebellum, and dorsal medulla when compared with fish from sites with predators. We also found positive connections between the evolution of brain structure and eye size but not between overall brain size and eye size. These results provide evidence for evolutionary covariation between the components of the brain and eye size. Such results suggest that selection, directly or indirectly, acts upon specific regions of the brain, rather than overall brain size, to enhance visual capabilities.

     
    more » « less
  2. Microlending, where a bank lends to a small group of people without credit histories, began with the Grameen Bank in Bangladesh, and is widely seen as the creation of Muhammad Yunus, who received the Nobel Peace Prize in recognition of his largely successful efforts. Since that time the modeling of microlending has received a fair amount of academic attention. One of the issues not yet addressed in full detail, however, is the issue of the size of the group. Some attention has nevertheless been paid using an experimental and game theory approach. We, instead, take a mathematical approach to the issue of an optimal group size, where the goal is to minimize the probability of default of the group. To do this, one has to create amodel with interacting forces, and to make precise the hypotheses of the model. We show that the original choice of Muhammad Yunus, of a group size of five people, is, under the right, and, we believe, reasonable hypotheses, either close to optimal, or even at times exactly optimal, i.e., the optimal group size is indeed five people. 
    more » « less
  3. Abstract

    Reducing the sample size can profoundly impact properties of bulk metallic glasses. Here, we systematically reduce the length scale of Au and Pt-based metallic glasses and study their vitrification behavior and atomic mobility. For this purpose, we exploit fast scanning calorimetry (FSC) allowing to study glassy dynamics in an exceptionally wide range of cooling rates and frequencies. We show that the mainαrelaxation process remains size independent and bulk-like. In contrast, we observe pronounced size dependent vitrification kinetics in micrometer-sized glasses, which is more evident for the smallest samples and at low cooling rates, resulting in more than 40 K decrease in fictive temperature,Tf, with respect to the bulk. We discuss the deep implications on how this outcome can be used to convey glasses to low energy states.

     
    more » « less
  4. James Aspnes and Othon Michail (Ed.)
    The population protocol model describes a network of anonymous agents that interact asynchronously in pairs chosen at random. Each agent starts in the same initial state s. We introduce the *dynamic size counting* problem: approximately counting the number of agents in the presence of an adversary who at any time can remove any number of agents or add any number of new agents in state s. A valid solution requires that after each addition/removal event, resulting in population size n, with high probability each agent "quickly" computes the same constant-factor estimate of the value log2n (how quickly is called the *convergence* time), which remains the output of every agent for as long as possible (the *holding* time). Since the adversary can remove agents, the holding time is necessarily finite: even after the adversary stops altering the population, it is impossible to *stabilize* to an output that never again changes. We first show that a protocol solves the dynamic size counting problem if and only if it solves the *loosely-stabilizing counting* problem: that of estimating logn in a *fixed-size* population, but where the adversary can initialize each agent in an arbitrary state, with the same convergence time and holding time. We then show a protocol solving the loosely-stabilizing counting problem with the following guarantees: if the population size is n, M is the largest initial estimate of logn, and s is the maximum integer initially stored in any field of the agents' memory, we have expected convergence time O(logn+logM), expected polynomial holding time, and expected memory usage of O(log2(s)+(loglogn)2) bits. Interpreted as a dynamic size counting protocol, when changing from population size nprev to nnext, the convergence time is O(lognnext+loglognprev). 
    more » « less