Coarse-grained materials are widely accepted to display the highest strain hardening and the best tensile ductility. We experimentally report an attractive strain hardening rate throughout the deformation stage at 77 kelvin in a stable single-phase alloy with gradient dislocation cells that even surpasses its coarse-grained counterparts. Contrary to conventional understanding, the exceptional strain hardening arises from a distinctive dynamic structural refinement mechanism facilitated by the emission and motion of massive multiorientational tiny stacking faults (planar defects), which are fundamentally distinct from the traditional linear dislocation–mediated deformation. The dominance of atomic-scale planar deformation faulting in plastic deformation introduces a different approach for strengthening and hardening metallic materials, offering promising properties and potential applications.
more »
« less
A Review on the Strengthening of Nanostructured Materials
Nanostructured materials, whose characteristic microstructure size is under 100 nm, can be either single-phasenanocrystalline materials or multi-phase nanocomposite materials. Nanocrystalline materials can also be treated asnanocomposites with grain interior as matrix and grain boundary as secondary phase. The strengthening models ofnanostructured materials resemble those strengthening models of conventional composite structures, but havesubstantial deviations from conventional strengthening mechanisms due to their distinctive nanoscale structure andthe complex hierarchy of their nanoscale microstructure. This paper reviewed the current progress in developmentsof strengthening models for nanostructured materials with emphasis on single-phase nanocrystalline and multiphasenanocomposite materials, which would help guide the design of new nanostructured materials and othersimilar nanoscale composite structures. Furthermore, practical large scale industrial applications of high strengthnanostructured materials require these materials to possess decent formability, ductility or other functionalproperties to satisfy both structural and multifunctional applications. Therefore, the latest developments of novelnanostructured materials are discussed to highlight their potential of overcoming the strength ductility trade-off andstrength-conductivity trade-off by various approaches. Their complex and distinctive nanoscale microstructuresuggests the potential challenges and opportunities in developing new strengthening models for designing futureadvanced nanostructured materials with unprecedented properties.
more »
« less
- Award ID(s):
- 1727875
- PAR ID:
- 10062394
- Date Published:
- Journal Name:
- International Journal of Current Engineering and Technology
- Volume:
- 8
- Issue:
- 02
- ISSN:
- 2347-5161
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
As an important type of functional material, nanocrystalline TiO2 with anatase phase has been used for solar energy conversion and photocatalysis. However, there have been only a few limited studies on the mechanical behaviors of nanocrystalline anatase. We performed a series of large-scale atomistic simulations to investigate the deformation of nanocrystalline anatase with mean grain sizes varying from 2 nm to 6 nm and amorphous TiO2 under uniaxial tension and compression at room temperature. The simulation results showed that for uniaxial tension, the fracture strains of simulated samples increase as the mean grain size decreases, and a superplastic deformation occurred in the nanocrystalline sample with a grain size of 2 nm. Such superplasticity of nanocrystalline anatase is attributed to the dominance of grain boundary sliding and nanoscale cavitation during deformation. The simulation results also showed that during uniaxial compression, the amorphization induced by high local compressive stress is the controlling plastic deformation mechanism, resulting in a good compressibility of nanocrystalline TiO2. During both tension and compression, nanocrystalline TiO2 exhibited good deformability, which is attributed to the fact that the grain boundaries with high volume fractions and disordered structures accommodated large plastic strains. Our present study provides a fundamental understanding of the plastic deformation of nanocrystalline anatase TiO2, as well as a route for enhancing the tensile and compressive deformability of nanostructured ceramics.more » « less
-
Abstract Multicomponent high‐entropy alloys (HEAs) can be tuned to a simple phase with some unique alloy characteristics. HEAs with body‐centered‐cubic (BCC) or hexagonal‐close‐packed (HCP) structures are proven to possess high strength and hardness but low ductility. The faced‐centered‐cubic (FCC) HEAs present considerable ductility, excellent corrosion and radiation resistance. However, their strengths are relatively low. Therefore, the strategy of strengthening the ductile FCC matrix phase is usually adopted to design HEAs with excellent performance. Among various strengthening methods, precipitation strengthening plays a dazzling role since the characteristics of multiple principal elements and slow diffusion effect of elements in HEAs provide a chance to form fine and stable nanoscale precipitates, pushing the strengths of the alloys to new high levels. This paper summarizes and review the recent progress in nanoprecipitate‐strengthened HEAs and their strengthening mechanisms. The alloy‐design strategies and control of the nanoscale precipitates in HEAs are highlighted. The future works on the related aspects are outlined.more » « less
-
Advanced structural materials are expected to display significantly improved mechanical properties and this may be achieved, at least in part, by refining the grain size to the submicrometer or the nanocrystalline range. This report provides a detailed summary of the role of grain size in the mechanical properties of metals. The effect of grain size on the high temperature behavior and the development of superplasticity is illustrated using deformation mechanism maps and the development of exceptional strength through grain refinement hardening at low temperatures is also discussed. It is shown that the deformation mechanism of grain boundary sliding, as developed theoretically, can be used to effectively predict both the high and low temperature behavior of metals having different grain sizes. This analysis explains the increase in strain rate sensitivity in ultrafine-grained metals with low and moderate melting points and the ability to increase both the strength and ductility of these materials to thereby overcome the strength-ductility paradox. The recent development of hybrid materials is also reviewed and it is demonstrated that, although these hybrids have received only limited attention to date, they provide a potential for making significant advances in the production of new structural materials.more » « less
-
Applications of Copper (Cu) range from small scale applications such as microelectronics interconnects to very large high-powered applications such as railguns. In all these applications, Cu conductivity and ampacity play vital roles. In some applications such as railguns, where Cu also plays a structural role, not only is high conductivity needed, but high strength, high ductility, and high wear resistance are also critical. Current technologies have achieved their full potential for producing better materials. New approaches and technologies are needed to develop superior properties. This research examines a new fabrication approach that is expected to produce Cu with superior mechanical strength, enhanced wear resistance, and increased electrical conductivity. Materials with refined grain structures were obtained by breaking down the coarse-grained Cu particles via cryogenic ball milling, followed by the consolidation of powders using cold isostatic pressing (CIP) and subsequent Continuous Equal Channel Angular Pressing (C-ECAP). The mixture of fine and ultrafine grains, with sizes between 200 nm to 2.5 µm and an average of 500 nm, was formed after ball milling at cryogenic temperatures. Further processing via C-ECAP produced nanostructured Cu with average grain sizes below 50 nm and excellent homogenous equiaxed grain shapes and random orientations. The hardness and tensile strength of the final Cu were approximately 158% and 95% higher than the traditional coarse-grained Cu bar, respectively. This material also displayed a good electrical conductivity rate of 74% International Annealed Copper Standard (IACS), which is comparable to the current Cu materials used in railgun applications.more » « less
An official website of the United States government

