Abstract While the electrical models of the membrane-based solid-state nanopores have been well established, silicon-based pyramidal nanopores cannot apply these models due to two distinctive features. One is its 35.3° half cone angle, which brings additional resistance to the moving ions inside the nanopore. The other is its rectangular entrance, which makes calculating the access conductance challenging. Here, we proposed and validated an effective transport model (ETM) for silicon-based pyramidal nanopores by introducing effective conductivity. The impact of half cone angle can be described equivalently using a reduced diffusion coefficient (effective diffusion coefficient). Because the decrease of diffusion coefficient results in a smaller conductivity, effective conductivity is used for the calculation of bulk conductance in ETM. In the classical model, intrinsic conductivity is used. We used the top-down fabrication method for generating the pyramidal silicon nanopores to test the proposed model. Compared with the large error (≥25% in most cases) when using the classical model, the error of ETM in predicting conductance is less than 15%. We also found that the ETM is applicable when the ratio of excess ion concentration and bulk ion concentration is smaller than 0.2. At last, it is proved that ETM can estimate the tip size of pyramidal silicon nanopore. We believe the ETM would provide an improved method for evaluating the pyramidal silicon nanopores.
more »
« less
Surface hydration drives rapid water imbibition into strongly hydrophilic nanopores
The imbibition of liquids into nanopores plays a critical role in numerous applications, and most prior studies focused on imbibition due to capillary flows. Here we report molecular simulations of the imbibition of water into single mica nanopores filled with pressurized gas. We show that, while capillary flow is suppressed by the high gas pressure, water is imbibed into the nanopore through surface hydration in the form of monolayer liquid films. As the imbibition front moves, the water film behind it gradually densifies. Interestingly, the propagation of the imbibition front follows a simple diffusive scaling law. The effective diffusion coefficient of the imbibition front, however, is more than ten times larger than the diffusion coefficient of the water molecules in the water film adsorbed on the pore walls. We clarify the mechanism for the rapid water imbibition observed here.
more »
« less
- Award ID(s):
- 1705287
- PAR ID:
- 10062498
- Date Published:
- Journal Name:
- Physical Chemistry Chemical Physics
- Volume:
- 19
- Issue:
- 31
- ISSN:
- 1463-9076
- Page Range / eLocation ID:
- 20506 to 20512
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Air–water interfacial adsorption complicates per‐ and polyfluoroalkyl substance (PFAS) transport in vadose zones. Air–water interfaces can arise from pendular rings between soil grains and thin water films on grain surfaces, the latter of which account for over 90% of the total air–water interfaces for most field‐relevant conditions. However, whether all thin‐water‐film air–water interfaces are accessible by PFAS and how mass‐transfer limitations in thin water films control PFAS transport in soils remain unknown. We develop a pore‐scale model that represents both PFAS adsorption at bulk capillary and thin‐water‐film air–water interfaces and the mass‐transfer processes between bulk capillary water and thin water films (including advection, aqueous diffusion, and surface diffusion along air–water interfaces). We apply the pore‐scale model to a series of numerical experiments—constrained by experimentally determined hydraulic parameters and air–water interfacial area data sets—to examine the impact of thin‐water‐film mass‐transfer limitations in a sand medium. Our analyses suggest: (a) The mass‐transfer limitations between bulk capillary water and thin water films inside a pore are negligible due to surface diffusion. (b) However, strong mass‐transfer limitations arise in thin water films of pore clusters where pendular rings disconnect. The mass‐transfer limitations lead to early arrival and long tailing behaviors even if surface diffusion is present. (c) Despite the mass‐transfer limitations, all air–water interfaces in the thin water films were accessed by PFAS under the simulated conditions. These findings highlight the importance of incorporating the thin‐water‐film mass‐transfer limitations and surface diffusion for modeling PFAS transport in vadose zones.more » « less
-
Existing transfer technologies in the construction of film-based electronics and devices are deeply established in the framework of native solid substrates. Here, we report a capillary approach that enables a fast, robust, and reliable transfer of soft films from liquid in a defect-free manner. This capillary transfer is underpinned by the transfer front of dynamic contact among receiver substrate, liquid, and film, and can be well controlled by a selectable motion direction of receiver substrates at a high speed. We demonstrate in extensive experiments, together with theoretical models and computational analysis, the robust capabilities of the capillary transfer using a versatile set of soft films with a broad material diversity of both film and liquid, surface-wetting properties, and complex geometric patterns of soft films onto various solid substrates in a deterministic manner.more » « less
-
Heat exchange between a solid material and the gas environment is critical for the heat dissipation of miniature electronic devices. In this aspect, existing experimental studies focus on non-porous structures such as solid thin films, nanotubes, and wires. In this work, the proposed two-layer model for the heat transfer coefficient (HTC) between a solid sample and the surrounding air is extended to 70-nm-thick nanoporous Si thin films that are patterned with periodic rectangular nanopores having feature sizes of 100–400 nm. The HTC values are extracted using the 3[Formula: see text] method based on AC self-heating of a suspended sample with better accuracy than steady-state measurements in some studies. The dominance of air conduction in the measured HTCs is confirmed by comparing measurements with varied sample orientations. The two-layer model, developed for nanotubes, is still found to be accurate when the nanoporous film is simply treated as a solid film in the HTC evaluation along with the radiative mean beam length as the characteristic length of the nanoporous film. This finding indicates the potential of increasing HTC by introducing ultra-fine nanoporous patterns, as guided by the two-layer model.more » « less
-
Experimental observations of drops of water with aniline dye softly located or impacting onto balsa wood substrates were used to elucidate the effect of an in-plane electric field (at a high voltage of 10 kV applied) on drop behavior. The top and side views were recorded simultaneously. The short-term recordings (on the scale of a few ms) demonstrated a slight effect of the applied in-plane electric field. In some trials, a greater number of finger-like structures were observed along the drop rim compared to the trials without voltage applied. These fingers developed during the advancing motion of the drop rim. The long-term recording (on the scale of ∼10 s) was used to evaluate the wettability-driven increase in the area-equivalent radius of the wetted area. These substrates had grooves in the inter-electrode or the cross-field directions. The groove directions affected the wettability-driven spreading and imbibition. The wettability-driven spreading in the long term was a much more significant effect than the effect of the electric field, because the imbibition significantly diminished the drop part above the porous surface, which diminished, in turn, the electric Maxwell stresses, which could stretch the drop. A simplified analytical model was developed to measure the moisture transport coefficient responsible for liquid imbibition in these experiments. Furthermore, the phase-field modeling of drops on balsa was used to illustrate how a change in the contact angle from hydrophobic to hydrophilic triggers drop imbibition into balsa wood.more » « less
An official website of the United States government

