Abstract Nuclear lamins have been considered an important structural element of the nucleus. The nuclear lamina is thought both to shield DNA from excessive mechanical forces and to transmit mechanical forces onto the DNA. However, to date there is not yet a technical approach to directly measure mechanical forces on nuclear lamins at the protein level. To overcome this limitation, we developed a nanobody-based intermolecular tension FRET biosensor capable of measuring the mechanical strain of lamin filaments. Using this sensor, we were able to show that the nuclear lamina is subjected to significant force. These forces are dependent on nuclear volume, actomyosin contractility, functional LINC complex, chromatin condensation state, cell cycle, and EMT. Interestingly, large forces were also present on nucleoplasmic lamins, indicating that these lamins may also have an important mechanical role in the nucleus. Overall, we demonstrate that the nanobody-based approach allows construction of biosensors for complex protein structures for mechanobiology studies.
more »
« less
Single-particle excitations in the level structure of 64Cu
Excited states of the 64Cu (Z=29,N=35) nucleus have been probed using heavy-ion-induced fusion evaporation reaction and an array of Compton-suppressed Clovers as detection system for the emitted γ rays. More than 50 new transitions have been identified and the level scheme of the nucleus has been established up to an excitation energy Ex∼6 MeV and spin ∼10ℏ. The experimental results have been compared with those from large-basis shell-model calculations that facilitated an understanding of the single-particle configurations underlying the level structure of the nucleus.
more »
« less
- Award ID(s):
- 1713857
- PAR ID:
- 10062606
- Date Published:
- Journal Name:
- Physical review. C, Nuclear physics
- Volume:
- 97
- ISSN:
- 1538-4497
- Page Range / eLocation ID:
- 014319
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Communication between chloroplasts and the nucleus in response to various environmental cues may be mediated by various small molecules. Signalling specificity could be enhanced if the physical contact between these organelles facilitates direct transfer and prevents interference from other subcellular sources of the same molecules. Plant cells have plastid–nuclear complexes, which provide close physical contact between these organelles. Plastid-nuclear complexes have been proposed to facilitate transfer of photosynthesis-derived H 2 O 2 to the nucleus in high light. Stromules (stroma filled tubular plastid extensions) may provide an additional conduit for transfer of a wider range of signalling molecules, including proteins. However, plastid–nuclear complexes and stromules have been hitherto treated as distinct phenomena. We suggest that plastid–nuclear complexes and stromules work in a coordinated manner so that, according to environmental conditions or developmental state, the two modes of connection contribute to varying extents. We hypothesize that this association is dynamic and that there may be a link between plastid–nuclear complexes and the development of stromules. Furthermore, the changes in contact could alter signalling specificity by allowing an extended or different range of signalling molecules to be delivered to the nucleus. This article is part of the theme issue ‘Retrograde signalling from endosymbiotic organelles’.more » « less
-
The color glass condensate (CGC) effective theory and the collinear factorization at high twist (HT) are two well-known frameworks describing perturbative QCD multiple scatterings in nuclear media. It has long been recognized that these two formalisms have their own domain of validity in different kinematic regions. Taking direct photon production in proton-nucleus collisions as an example, we clarify for the first time the relation between CGC and HT at the level of a physical observable. We show that the CGC formalism beyond shock-wave approximation, and with the Landau-Pomeranchuk-Migdal interference effect is consistent with the HT formalism in the transition region where they overlap. Such a unified picture paves the way for mapping out the phase diagram of parton density in nuclear medium from dilute to dense region.more » « less
-
Megacyclops gigas, a freshwater microcrustacean (Copepoda: Cyclopoida), undergoes endoreduplication during early embryogenesis, a process during which DNA synthesis during the cell cycle occurs without subsequent mitosis and cytokinesis. This kind of cell cycle, an endocycle, results in a doubling of the nuclear DNA content. By the 4-cell embryonic stage, two endocycles have occurred, increasing the initial 2C level of DNA at 7.5 pg DNA per nucleus to the 8C level at 30 pg DNA per nucleus. These 8C cells proliferate to produce additional cells at the 8C level in the 8-cell embryo. DNA contents were measured using Feulgen Image Analysis Densitometry. Re-entry into the typical 2C – 4C cell cycle has begun by the 6th cleavage division, with some cell lineages containing 2C amounts while others contain 4C amounts. This mixture of cells with different DNA contents persists until the ~ 500-cell stage. All adult somatic cells contain the 2C amount of DNA. Some half anaphase chromosome figures at the 64-cell stage contain ~ 5 or ~ 9 pg DNA per nucleus, indicative of aneuploidy resulting from imperfect mitoses. The large clutch sizes of M. gigas may compensate for such an error prone process. Endoreduplication of the kind found in M. gigas is rare in that (1) it involves endocycles in all cells of the organism in a particular developmental stage, rather than being limited to specific tissues and (2) the endoreduplicated cells undergo depolyploidization. Overall, genomic stability in the M. gigas population appears to be unaffected. We hypothesize that the role of endoreduplication in this species is associated with a combination of increased demands for cellular differentiation and protein transcription related to the unusually large body size of M. gigas and its habitat type characterized by extremely low temperatures.more » « less
-
Megacyclops gigas, a freshwater microcrustacean (Copepoda: Cyclopoida), undergoes endoreduplication during early embryogenesis, a process during which DNA synthesis during the cell cycle occurs without subsequent mitosis and cytokinesis. This kind of cell cycle, an endocycle, results in a doubling of the nuclear DNA content. By the 4-cell embryonic stage, two endocycles have occurred, increasing the initial 2C level of DNA at 7.5 pg DNA per nucleus to the 8C level at 30 pg DNA per nucleus. These 8C cells proliferate to produce additional cells at the 8C level in the 8-cell embryo. DNA contents were measured using Feulgen Image Analysis Densitometry. Re-entry into the typical 2C – 4C cell cycle has begun by the 6th cleavage division, with some cell lineages containing 2C amounts while others contain 4C amounts. This mixture of cells with different DNA contents persists until the ~ 500-cell stage. All adult somatic cells contain the 2C amount of DNA. Some half anaphase chromosome figures at the 64-cell stage contain ~ 5 or ~ 9 pg DNA per nucleus, indicative of aneuploidy resulting from imperfect mitoses. The large clutch sizes of M. gigas may compensate for such an error prone process. Endoreduplication of the kind found in M. gigas is rare in that (1) it involves endocycles in all cells of the organism in a particular developmental stage, rather than being limited to specific tissues and (2) the endoreduplicated cells undergo depolyploidization. Overall, genomic stability in the M. gigas population appears to be unaffected. We hypothesize that the role of endoreduplication in this species is associated with a combination of increased demands for cellular differentiation and protein transcription related to the unusually large body size of M. gigas and its habitat type characterized by extremely low temperatures.more » « less
An official website of the United States government

