skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Title: The E3 ubiquitin ligase SP 1‐like 1 plays a positive role in peroxisome biogenesis in Arabidopsis

Peroxisomes are dynamic organelles crucial for a variety of metabolic processes during the development of eukaryotic organisms, and are functionally linked to other subcellular organelles, such as mitochondria and chloroplasts. Peroxisomal matrix proteins are imported by peroxins (PEX proteins), yet the modulation of peroxin functions is poorly understood. We previously reported that, besides its known function in chloroplast protein import, the Arabidopsis E3 ubiquitin ligase SP1 (suppressor of ppi1 locus1) also targets to peroxisomes and mitochondria, and promotes the destabilization of the peroxisomal receptor–cargo docking complex components PEX13 and PEX14. Here we present evidence that in Arabidopsis, SP1's closest homolog SP1‐like 1 (SPL1) plays an opposite role to SP1 in peroxisomes. In contrast tosp1, loss‐of‐function ofSPL1led to reduced peroxisomal β‐oxidation activity, and enhanced the physiological and growth defects ofpex14andpex13mutants. Transient co‐expression of SPL1 and SP1 promoted each other's destabilization. SPL1 reduced the ability of SP1 to induce PEX13 turnover, and it is the N‐terminus of SP1 and SPL1 that determines whether the protein is able to promote PEX13 turnover. Finally, SPL1 showed prevalent targeting to mitochondria, but rather weak and partial localization to peroxisomes. Our data suggest that these two members of the same E3 protein family utilize distinct mechanisms to modulate peroxisome biogenesis, where SPL1 reduces the function of SP1. Plants and possibly other higher eukaryotes may employ this small family of E3 enzymes to differentially modulate the dynamics of several organelles essential to energy metabolism via the ubiquitin‐proteasome system.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Date Published:
Journal Name:
The Plant Journal
Page Range / eLocation ID:
p. 836-846
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    Catabolism of fatty acids stored in oil bodies is essential for seed germination and seedling development in Arabidopsis. This fatty acid breakdown occurs in peroxisomes, organelles that sequester oxidative reactions. Import of peroxisomal enzymes is facilitated by peroxins includingPEX5, a receptor that delivers cargo proteins from the cytosol to the peroxisomal matrix. After cargo delivery, a complex of thePEX1 andPEX6ATPases and thePEX26 tail‐anchored membrane protein removes ubiquitinatedPEX5 from the peroxisomal membrane. We identified Arabidopsispex6andpex26mutants by screening for inefficient seedling β‐oxidation phenotypes. The mutants displayed distinct defects in growth, response to a peroxisomally metabolized auxin precursor, and peroxisomal protein import. The lowPEX5 levels in these mutants were increased by treatment with a proteasome inhibitor or by combiningpex26with peroxisome‐associated ubiquitination machinery mutants, suggesting that ubiquitinatedPEX5 is degraded by the proteasome when the function ofPEX6 orPEX26 is reduced. Combiningpex26with mutations that increasePEX5 levels either worsened or improvedpex26physiological and molecular defects, depending on the introduced lesion. Moreover, elevatingPEX5 levels via a35S:PEX5transgene exacerbatedpex26defects and ameliorated the defects of only a subset ofpex6alleles, implying that decreasedPEX5 is not the sole molecular deficiency in these mutants. We found peroxisomes clustered around persisting oil bodies inpex6andpex26seedlings, suggesting a role for peroxisomal retrotranslocation machinery in oil body utilization. The disparate phenotypes of thesepexalleles may reflect unanticipated functions of the peroxisomalATPase complex.

    more » « less
  2. The ubiquitin-binding NBR1 autophagy receptor plays a prominent role in recognizing ubiquitylated protein aggregates for vacuolar degradation by macroautophagy. Here, we show that upon exposing Arabidopsis plants to intense light, NBR1 associates with photodamaged chloroplasts independently of ATG7, a core component of the canonical autophagy machinery. NBR1 coats both the surface and interior of chloroplasts, which is then followed by direct engulfment of the organelles into the central vacuole via a microautophagy-type process. The relocalization of NBR1 into chloroplasts does not require the chloroplast translocon complexes embedded in the envelope but is instead greatly enhanced by removing the self-oligomerization mPB1 domain of NBR1. The delivery of NBR1-decorated chloroplasts into vacuoles depends on the ubiquitin-binding UBA2 domain of NBR1 but is independent of the ubiquitin E3 ligases SP1 and PUB4, known to direct the ubiquitylation of chloroplast surface proteins. Compared to wild-type plants, nbr1 mutants have altered levels of a subset of chloroplast proteins and display abnormal chloroplast density and sizes upon high light exposure. We postulate that, as photodamaged chloroplasts lose envelope integrity, cytosolic ligases reach the chloroplast interior to ubiquitylate thylakoid and stroma proteins which are then recognized by NBR1 for autophagic clearance. This study uncovers a new function of NBR1 in the degradation of damaged chloroplasts by microautophagy. 
    more » « less
  3. Abstract

    Plant development requires communication on many levels, including between cells and between organelles within a cell. For example, mitochondria and plastids have been proposed to be sensors of environmental stress and to coordinate their responses. Here we present evidence for communication between mitochondria and chloroplasts during leaf and root development, based on genetic and physical interactions between threeMechanosensitive channel ofSmall conductance‐Like (MSL) proteins fromArabidopsis thaliana.MSLproteins areArabidopsishomologs of the bacterialMechanosensitivechannel ofSmall conductance (MscS), which relieves cellular osmotic pressure to protect against lysis during hypoosmotic shock.MSL1 localizes to the inner mitochondrial membrane, whileMSL2 andMSL3 localize to the inner plastid membrane and are required to maintain plastid osmotic homeostasis during normal growth and development. In this study, we characterized the phenotypic effect of a genetic lesion inMSL1, both in wild type and inmsl2 msl3mutant backgrounds.msl1single mutants appear wild type for all phenotypes examined. The characteristic leaf rumpling inmsl2 msl3double mutants was exacerbated in themsl1 msl2 msl3triple mutant. However, the introduction of themsl1lesion into themsl2 msl3mutant background suppressed othermsl2 msl3mutant phenotypes, including ectopic callus formation, accumulation of superoxide and hydrogen peroxide in the shoot apical meristem, decreased root length, and reduced number of lateral roots. All these phenotypes could be recovered by molecular complementation with a transgene containing a wild type version ofMSL1. In yeast‐based interaction studies,MSL1 interacted with itself, but not withMSL2 orMSL3. These results establish that the abnormalities observed inmsl2 msl3double mutants is partially dependent on the presence of functionalMSL1 and suggest a possible role for communication between plastid and mitochondria in seedling development.

    more » « less
  4. Abstract

    Most members of basic leucine zipper (bZIP) transcription factor (TF) subgroup A play important roles as positive effectors in abscisic acid (ABA) signaling during germination and/or in vegetative stress responses. In multiple plant species, one member, ABA insensitive 5 (ABI5), is a major TF that promotes seed maturation and blocks early seeding growth in response to ABA. Other members, referred to as either ABRE‐binding factors (ABFs), ABRE‐binding proteins (AREBs), or D3 protein‐binding factors (DPBFs), are implicated as major players in stress responses during vegetative growth. Studies on the proteolytic regulation of ABI5, ABF1, and ABF3 inArabidopsis thalianahave shown that the proteins have moderate degradation rates and accumulate in the presence of the proteasome inhibitor MG132. Exogenous ABA slows their degradation and the ubiquitin E3 ligase called KEEP ON GOING (KEG) is important for their degradation. However, there are some reported differences in degradation among subgroup A members. The conserved C‐terminal sequences (referred to as the C4 region) enhance degradation of ABI5 but stabilize ABF1 and ABF3. To better understand the proteolytic regulation of the ABI5/ABFs and determine whether there are differences between vegetative ABFs and ABI5, we studied the degradation of an additional family member, ABF2, and compared its in vitro degradation to that of ABI5. As previously seen for ABI5, ABF1, and ABF3, epitope‐tagged constitutively expressed ABF2 degrades in seedlings treated with cycloheximide and is stabilized following treatment with the proteasome inhibitor MG132. Tagged ABF2 protein accumulates when seedlings are treated with ABA, but its mRNA levels do not increase, suggesting that the protein is stabilized in the presence of ABA. ABF2 is also an in vitro ubiquitination substrate of the E3 ligase KEG and recombinant ABF2 is stable inkeglysates. ABF2 with a C4 deletion degrades more quickly in vitro than full‐length ABF2, as previously observed for ABF1 and ABF3, suggesting that the conserved C4 region contributes to its stability. In contrast to ABF2 and consistent with previously published work, ABI5 with C terminal deletions including an analogous C4 deletion is stabilized in vitro compared to full length ABI5. In vivo expression of an ABF1 C4 deletion protein appears to have reduced activity compared to equivalent levels of full length ABF1. Additional group A family members show similar proteolytic regulation by MG132 and ABA. Altogether, these results together with other work on ABI5 regulation suggest that the vegetative ABFs share proteolytic regulatory mechanisms that are not completely shared with ABI5.

    more » « less

    Peroxisomes are universal eukaryotic organelles essential to plants and animals. Most peroxisomal matrix proteins carry peroxisome targeting signal type 1 (PTS1), a C‐terminal tripeptide. Studies from various kingdoms have revealed influences from sequence upstream of the tripeptide on peroxisome targeting, supporting the view that positive charges in the upstream region are the major enhancing elements. However, a systematic approach to better define the upstream elements influencing PTS1 targeting capability is needed. Here, we used protein sequences from 177 plant genomes to perform large‐scale and in‐depth analysis of the PTS1 domain, which includes the PTS1 tripeptide and upstream sequence elements. We identified and verified 12 low‐frequency PTS1 tripeptides and revealed upstream enhancing and inhibiting sequence patterns for peroxisome targeting, which were subsequently validatedin vivo. Follow‐up analysis revealed that nonpolar and acidic residues have relatively strong enhancing and inhibiting effects, respectively, on peroxisome targeting. However, in contrast to the previous understanding, positive charges alone do not show the anticipated enhancing effect and that both the position and property of the residues within these patterns are important for peroxisome targeting. We further demonstrated that the three residues immediately upstream of the tripeptide are the core influencers, with a ‘basic‐nonpolar‐basic’ pattern serving as a strong and universal enhancing pattern for peroxisome targeting. These findings have significantly advanced our knowledge of the PTS1 domain in plants and likely other eukaryotic species as well. The principles and strategies employed in the present study may also be applied to deciphering auxiliary targeting signals for other organelles.

    more » « less