skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Title: Assessing models for estimation and methods for uncertainty quantification for spatial return levels
Abstract

The return level estimation is an essential topic in studying spatial extremes for environmental data. Recently, various models for spatial extremes have emerged, which generally yield different estimates for return levels, given the same data. In the meantime, several approaches that obtain confidence intervals (CIs) for return levels have arisen, and the results from different approaches can also largely disagree. These pose natural questions for assessing different return level estimation methods and different CI derivation approaches. In this article, we compare an array of popular models for spatial extremes in return level estimation, as well as three approaches in CI derivation, through extensive Monte Carlo simulations. Our results show that in general, max‐stable models yield return level estimates with similar mean squared error, and the spatial generalized extreme value model also provides comparable estimates. The bootstrap method is recommended for max‐stable models to compute the CI, and the profile likelihood CI works well for spatial generalized extreme value. We also evaluate the methods for return level interpolation at unknown spatial locations and find that kriging of marginal return level estimates performs as well as max‐stable models.

 
more » « less
NSF-PAR ID:
10062857
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Environmetrics
Volume:
30
Issue:
2
ISSN:
1180-4009
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Spatial extremes are common for climate data as the observations are usually referenced by geographic locations and dependent when they are nearby. An important goal of extremes modeling is to estimate the T-year return level. Among the methods suitable for modeling spatial extremes, perhaps the simplest and fastest approach is the spatial generalized extreme value (GEV) distribution and the spatial generalized Pareto distribution (GPD) that assume marginal independence and only account for dependence through the parameters. Despite the simplicity, simulations have shown that return level estimation using the spatial GEV and spatial GPD still provides satisfactory results compared to max-stable processes, which are asymptotically justified models capable of representing spatial dependence among extremes. However, the linear functions used to model the spatially varying coefficients are restrictive and may be violated.We propose a flexible and fast approach based on the spatial GEV and spatial GPD by introducing fused lasso and fused ridge penalty for parameter regularization. This enables improved return level estimation for large spatial extremes compared to the existing methods. Supplemental files for this article are available online. 
    more » « less
  2. Extreme storm surges can overwhelm many coastal flooding protection measures in place and cause severe damages to private communities, public infrastructure, and natural ecosystems. In the US Mid-Atlantic, a highly developed and commercially active region, coastal flooding is one of the most significant natural hazards and a year-round threat from both tropical and extra-tropical cyclones. Mean sea levels and high-tide flood frequency has increased significantly in recent years, and major storms are projected to increase into the foreseeable future. We estimate extreme surges using hourly water level data and harmonic analysis for 1980–2019 at 12 NOAA tide gauges in and around the Delaware and Chesapeake Bays. Return levels (RLs) are computed for 1.1, 3, 5, 10, 25, 50, and 100-year return periods using stationary extreme value analysis on detrended skew surges. Two traditional approaches are investigated, Block Maxima fit to General Extreme Value distribution and Points-Over-Threshold fit to Generalized Pareto distribution, although with two important enhancements. First, the GEV r -largest order statistics distribution is used; a modified version of the GEV distribution that allows for multiple maximum values per year. Second, a systematic procedure is used to select the optimum value for r (for the BM/GEVr approach) and the threshold (for the POT/GP approach) at each tide gauge separately. RLs have similar magnitudes and spatial patterns from both methods, with BM/GEVr resulting in generally larger 100-year and smaller 1.1-year RLs. Maximum values are found at the Lewes (Delaware Bay) and Sewells Point (Chesapeake Bay) tide gauges, both located in the southwest region of their respective bays. Minimum values are found toward the central bay regions. In the Delaware Bay, the POT/GP approach is consistent and results in narrower uncertainty bands whereas the results are mixed for the Chesapeake. Results from this study aim to increase reliability of projections of extreme water levels due to extreme storms and ultimately help in long-term planning of mitigation and implementation of adaptation measures. 
    more » « less
  3. Abstract

    The estimation of the frequency of intense rainfall events is a crucial step for quantifying their impact on human societies and on the environment. This process is hindered by large gaps in ground observational networks at the global scale, such that extensive areas remain ungauged. The increasing availability of satellite‐based rainfall estimates, while providing data with unprecedented resolution and global coverage, also introduces new challenges: the scale disparity between gridded and rain‐gauge precipitation products on the one hand, and the short length of the available satellite records on the other. Here we propose a statistical framework for the estimation of rainfall extremes that is specifically designed to simultaneously address these two key issues, providing a new way of estimating extreme rainfall magnitudes from space. A downscaling procedure is here introduced to recover the spatial correlation and the probability density function of daily rainfall at the point (gauge) scale from coarse‐scale satellite estimates. The results are then combined with a recent statistical model of extremes (the Metastatistical Extreme Value distribution), which optimizes the use of the information obtained from relatively short satellite observational time series. The methodology is tested using data from the Tropical Rainfall Measuring Mission Multisatellite Precipitation Analysis over the Little Washita River, Oklahoma. We find that our approach satisfactorily reproduces downscaled daily rainfall probability density functions and can significantly improve the Tropical Rainfall Measuring Mission Multisatellite Precipitation Analysis‐based estimation of quantiles with return times larger than the length of the available data set (19 years here), which are especially important for several water‐related applications.

     
    more » « less
  4. Abstract

    We use six Earth system models (ESMs) run under SSP3-7.0, a scenario characterized by a relatively large land use change (LUC) over the 21st century, and under a variant of the same scenario where a significantly different pattern of LUC, taken from SSP1-2.6, was used, all else being equal. Our goal is to identify changes in climate extremes between the two scenarios that are statistically significant and robust across the ESMs. The motivation for this study is to test a long-held assumption of the shared socio-economic pathway-representative concentration pathway (SSP-RCP) scenario framework: that the signal from LUC can be safely disregarded when pairing different SSPs to the compatible RCPs, where compatibility only considers global radiative forcing, predominantly determined by well-mixed greenhouse gasses emissions. We analyze extremes of daily minimum and maximum temperatures and precipitation, after fitting non-stationary generalized extreme value distributions in a way that borrows strength along the length of the simulation (2015–2100) and across initial condition ensembles. We consider changes in the 20 year return levels (RL20s) of these metrics by 2100, and focus on eight locations where LUC is large within each scenario, and strongly differs between scenarios, averaging the RL20s over a neighborhood characterized by the same LUC to enhance the signal to noise. We find that precipitation extremes do not show significant differences attributable to LUC differences. For temperature extremes (cold and hot) results are mixed, with some location-index combination showing significant results for some of the ESMs but not all, and not many coherent changes appearing for indices across regions, or regions across indices. These ESMs are representative of what is typically adopted as the source of climate information for impact studies, when the SSP-RCP framework is put to use. Overall, our analysis suggests that the hypothesis to pair SSPs to RCPs in a flexible fashion is overall defensible. However, the appearance of some coherence in a few locations and for some indices invites further investigation.

     
    more » « less
  5. Abstract Intensity–duration–frequency (IDF) analyses of rainfall extremes provide critical information to mitigate, manage, and adapt to urban flooding. The accuracy and uncertainty of IDF analyses depend on the availability of historical rainfall records, which are more accessible at daily resolution and, quite often, are very sparse in developing countries. In this work, we quantify performances of different IDF models as a function of the number of available high-resolution (Nτ) and daily (N24h) rain gauges. For this aim, we apply a cross-validation framework that is based on Monte Carlo bootstrapping experiments on records of 223 high-resolution gauges in central Arizona. We test five IDF models based on (two) local, (one) regional, and (two) scaling frequency analyses of annual rainfall maxima from 30-min to 24-h durations with the generalized extreme value (GEV) distribution. All models exhibit similar performances in simulating observed quantiles associated with return periods up to 30 years. When Nτ > 10, local and regional models have the best accuracy; bias correcting the GEV shape parameter for record length is recommended to estimate quantiles for large return periods. The uncertainty of all models, evaluated via Monte Carlo experiments, is very large when Nτ ≤ 5; however, if N24h ≥ 10 additional daily gauges are available, the uncertainty is greatly reduced and accuracy is increased by applying simple scaling models, which infer estimates on subdaily rainfall statistics from information at daily scale. For all models, performances depend on the ability to capture the elevation control on their parameters. Although our work is site specific, its results provide insights to conduct future IDF analyses, especially in regions with sparse data. 
    more » « less