skip to main content

Title: A New Approach to Collaboration: A Partnership between an NSF-funded Engineering Research Center and a Liberal Arts College
In August 2016, the authors, faculty members at Lafayette College, were awarded a National Science Foundation (NSF) grant (Grant No. CMMI-1632963) based on an unsolicited proposal to the NSF’s CMMI Division. Like many faculty at strictly undergraduate institutions, we routinely provide opportunities for students to work on research projects and fund this research in some situations through external grants. An innovation in this particular grant was the creation of a research collaboration between faculty and students at Lafayette and an NSF-funded Engineering Research Center (ERC). As stated on the NSF website, “The goal of the ERC Program is to integrate engineering research and education with technological innovation to transform national prosperity, health, and security.” To accomplish this goal, collaborations between ERCs and other institutions are inherent in the work of an ERC; however, research collaborations between ERCs and small liberal arts colleges are rare and we know of no other collaboration of this type. In our most recent research project, we have developed and implemented a model that successfully provides our students and ourselves with opportunities to collaborate on an interdisciplinary research project with faculty, researchers, and graduate students at the NSF-funded Center for Bio-mediated and Bio-inspired Geotechnics (CBBG). This paper more » provides a brief overview of the goals of the research project and describes our motivation for establishing the collaboration, the structure of the collaboration, the anticipated broader impacts associated with the work, and the results from the first 18 months of the partnership. A logic model is included to illustrate the connections between the resources, strategies, outcomes, and long-term impacts associated with the collaboration. The goal of this paper is to describe the collaboration between Lafayette College and the ERC from the point of view of the faculty members at Lafayette, to describe the positive outcomes that have resulted from this collaboration, and to encourage faculty members at other small colleges to consider developing similar collaborations. « less
Authors:
;
Award ID(s):
1632963
Publication Date:
NSF-PAR ID:
10062941
Journal Name:
ASEE Annual Conference proceedings
ISSN:
1524-4644
Sponsoring Org:
National Science Foundation
More Like this
  1. In August 2016, the authors, faculty members at Lafayette College, were awarded a National Science Foundation (NSF) grant (Grant No. CMMI-1632963) based on an unsolicited proposal to the NSF’s CMMI Division. Like many faculty at strictly undergraduate institutions, we routinely provide opportunities for students to work on research projects and fund this research in some situations through external grants. An innovation in this particular grant was the creation of a research collaboration between faculty and students at Lafayette and an NSF-funded Engineering Research Center (ERC). As stated on the NSF website, “The goal of the ERC Program is to integratemore »engineering research and education with technological innovation to transform national prosperity, health, and security.” To accomplish this goal, collaborations between ERCs and other institutions are inherent in the work of an ERC; however, research collaborations between ERCs and small liberal arts colleges are rare and we know of no other collaboration of this type. In our most recent research project, we have developed and implemented a model that successfully provides our students and ourselves with opportunities to collaborate on an interdisciplinary research project with faculty, researchers, and graduate students at the NSF-funded Center for Bio-mediated and Bio-inspired Geotechnics (CBBG). This paper provides a brief overview of the goals of the research project and describes our motivation for establishing the collaboration, the structure of the collaboration, the anticipated broader impacts associated with the work, and the results from the first 18 months of the partnership. A logic model is included to illustrate the connections between the resources, strategies, outcomes, and long-term impacts associated with the collaboration. The goal of this paper is to describe the collaboration between Lafayette College and the ERC from the point of view of the faculty members at Lafayette, to describe the positive outcomes that have resulted from this collaboration, and to encourage faculty members at other small colleges to consider developing similar collaborations.« less
  2. National Science Foundation (NSF) funded Engineering Research Centers (ERC) must complement their technical research with various education and outreach opportunities to: 1) improve and promote engineering education, both within the center and to the local community; 2) encourage and include the underrepresented populations to participate in Engineering activities; and 3) advocate communication and collaboration between industry and academia. ERCs ought to perform an adequate evaluation of their educational and outreach programs to ensure that beneficial goals are met. Each ERC has complete autonomy in conducting and reporting such evaluation. Evaluation tools used by individual ERCs are quite similar, but eachmore »ERC has designed their evaluation processes in isolation, including evaluation tools such as survey instruments, interview protocols, focus group protocols, and/or observation protocols. These isolated efforts resulted in redundant resources spent and lacking outcome comparability across ERCs. Leaders from three different ERCs led and initiated a collaborative effort to address the above issue by building a suite of common evaluation instruments that all current and future ERCs can use. This leading group consists of education directors and external evaluators from all three partners ERCs and engineering education researchers, who have worked together for two years. The project intends to address the four ERC program clusters: Broadening Participation in Engineering, Centers and Networks, Engineering Education, and Engineering Workforce Development. The instruments developed will pay attention to culture of inclusion, outreach activities, mentoring experience, and sustained interest in engineering. The project will deliver best practices in education program evaluation, which will not only support existing ERCs, but will also serve as immediate tools for brand new ERCs and similar large-scale research centers. Expanding the research beyond TEEC and sharing the developed instruments with NSF as well as other ERCs will also promote and encourage continual cross-ERC collaboration and research. Further, the joint evaluation will increase the evaluation consistency across all ERC education programs. Embedded instrumental feedback loops will lead to continual improvement to ERC education performance and support the growth of an inclusive and innovative engineering workforce. Four major deliveries are planned. First, develop a common quantitative assessment instrument, named Multi-ERC Instrument Inventory (MERCII). Second, develop a set of qualitative instruments to complement MERCII. Third, create a web-based evaluation platform for MERCII. Fourth, update the NSF ERC education program evaluation best practice manual. These deliveries together will become part of and supplemented by an ERC evaluator toolbox. This project strives to significantly impact how ERCs evaluate their educational and outreach programs. Single ERC based studies lack the sample size to truly test the validity of any evaluation instruments or measures. A common suite of instruments across ERCs would provide an opportunity for a large scale assessment study. The online platform will further provide an easy-to-use tool for all ERCs to facilitate evaluation, share data, and reporting impacts.« less
  3. Applying for grants from the National Science Foundation (NSF) requires a paradigm shift at many community and technical colleges, because the primary emphasis at two-year colleges is on teaching. This shift is necessary because of the NSF expectation that a STEM faculty member will lead the project as Principal Investigator. Preparing successful NSF grant proposals also requires knowledge, skills, and strategies that differ from other sources from which two-year colleges seek grant funding. Since 2012, the Mentor-Connect project has been working to build capacity among two-year colleges and leadership skills among their STEM faculty to help them prepare competitive grantmore »proposals for the National Science Foundation’s Advanced Technological Education (NSF-ATE) program. NSF-ATE focuses on improving the education of technicians for advanced technology fields that drive the nation’s economy. As an NSF-ATE-funded initiative, Mentor-Connect has developed a three-pronged approach of mentoring, technical assistance, and digital resources to help potential grantees with the complexities of the proposal submission process. Grant funding makes it possible to provide this help at no cost to eligible, two-year college educators. Mentor-Connect support services for prospective grantees are available for those who are new to ATE (community or technical colleges that have not received an NSF ATE award in 7 or more years), those seeking a larger second grant from the ATE Program after completing a small, new-to-ATE project, and for those whose first or second grant proposal submission to the NSF ATE Program was declined (not funded). The Mentor-Connect project has succeeded in raising interest in the NSF-ATE program. Over a seven-year period more than 80% of the 143 participating colleges have submitted proposals. Overall, the funding rate among colleges that participated in the Mentor-Connect project is exceptionally high. Of the 97 New-to-ATE proposals submitted from Cohorts 1 through 6, 71 have been funded, for a funding rate of 73%. Mentor-Connect is also contributing to a more geographically and demographically diverse NSF-ATE program. To analyze longer-term impacts, the project’s evaluator is conducting campus site visits at the new-to-ATE grantee institutions as their initial ATE projects are being completed. A third-party researcher has contributed to the site-visit protocol being used by evaluators. The researcher is also analyzing the site-visit reports to harvest outcomes from this work. This paper shares findings from seven cohorts that have completed a grant cycle with funding results known, as well as qualitative data from site visits with the first two cohorts of grantees. Recommendations for further research are also included.« less
  4. Applying for grants from the National Science Foundation (NSF) requires a paradigm shift at many community and technical colleges, because the primary emphasis at two-year colleges is on teaching. This shift is necessary because of the NSF expectation that a STEM faculty member will lead the project as Principal Investigator. Preparing successful NSF grant proposals also requires knowledge, skills, and strategies that differ from other sources from which two-year colleges seek grant funding. Since 2012, the Mentor-Connect project has been working to build capacity among two-year colleges and leadership skills among their STEM faculty to help them prepare competitive grantmore »proposals for the National Science Foundation’s Advanced Technological Education (NSF-ATE) program. NSF-ATE focuses on improving the education of technicians for advanced technology fields that drive the nation’s economy. As an NSF-ATE-funded initiative, Mentor-Connect has developed a three-pronged approach of mentoring, technical assistance, and digital resources to help potential grantees with the complexities of the proposal submission process. Grant funding makes it possible to provide this help at no cost to eligible, two-year college educators. Mentor-Connect support services for prospective grantees are available for those who are new to ATE (community or technical colleges that have not received an NSF ATE award in 7 or more years), those seeking a larger second grant from the ATE Program after completing a small, new-to-ATE project, and for those whose first or second grant proposal submission to the NSF ATE Program was declined (not funded). The Mentor-Connect project has succeeded in raising interest in the NSF-ATE program. Over a seven-year period more than 80% of the 143 participating colleges have submitted proposals. Overall, the funding rate among colleges that participated in the Mentor-Connect project is exceptionally high. Of the 97 New-to-ATE proposals submitted from Cohorts 1 through 6, 71 have been funded, for a funding rate of 73%. Mentor-Connect is also contributing to a more geographically and demographically diverse NSF-ATE program. To analyze longer-term impacts, the project’s evaluator is conducting campus site visits at the new-to-ATE grantee institutions as their initial ATE projects are being completed. A third-party researcher has contributed to the site-visit protocol being used by evaluators. The researcher is also analyzing the site-visit reports to harvest outcomes from this work. This paper shares findings from seven cohorts that have completed a grant cycle with funding results known, as well as qualitative data from site visits with the first two cohorts of grantees. Recommendations for further research are also included.« less
  5. The National Science Foundation (NSF) Emerging Frontiers and Innovation (EFRI) Research Experience and Mentoring (REM) program nationally supports hands-on research and ongoing mentorship in STEM fields at various universities and colleges. The NSF EFRI-REM Mentoring Catalyst initiative was designed to build and train these robust, interactive research mentoring communities that are composed of faculty, postdoctoral associates and graduate student mentors, to broaden participation of underrepresented groups in STEM research who are funded through NSF EFRI-REM. This work-in-progress paper describes the first five years of this initiative, where interactive training programs were implemented from multiple frameworks of effective mentoring. Principal investigators,more »postdoctoral associates and graduate students are often expected to develop and establish mentoring plans without any formal training in how to be effective mentors. Since the start of this initiative, over 300 faculty, postdoctoral associates and graduate students have been trained on promising practices, strategies, and tools to enhance their research mentoring experiences. In addition to formal mentor training, opportunities to foster a community of practice with current mentors and past mentor training participants (sage mentors) were provided. During these interactions, promising mentoring practices were shared to benefit the mentors and the different mentoring populations that the EFRI-REMs serve. The community of practice connected a diverse group of institutions and faculty to help the EFRI-REM community in its goal of broadening participation across a range of STEM disciplines. Those institutions are then able to discuss, distill and disseminate best practices around the mentoring of participants through targeted mentored training beyond the EFRI-REM at their home institutions. Not only does the EFRI-REM Catalyst initiative focus on broadening participation via strategic training of research mentors, it also empowers mentees, including undergraduate and graduate students and postdoctoral associates, in their research experiences through an entering research undergraduate course and formal mentoring training workshops. Future expansion to other academic units (e.g., colleges, universities) builds on the research collaborations and the initiatives developed and presented in this work-in-progress paper. A long-term goal is to provide insights via collaborative meetings (e.g., webinars, presentations) for STEM and related faculty who are assembling an infrastructure (e.g., proposals for the ERFI-REM program) across a range of research structures. In summary, this work-in-progress paper provides a description of the design and implementation of this initiative, preliminary findings, expanding interactions to other NSF supported Engineering Research Centers, and the future directions of the EFRI-REM Mentoring Catalyst initiative.« less