We compare embedded young massive star clusters (YMCs) to (sub-)millimeter line observations tracing the excitation and dissociation of molecular gas in the starburst ring of NGC 1365. This galaxy hosts one of the strongest nuclear starbursts and richest populations of YMCs within 20 Mpc. Here we combine near-/mid-IR PHANGS–JWST imaging with new Atacama Large Millimeter/submillimeter Array multi-
We report the synthesis, characterisation and electrochemistry of Co(
- Publication Date:
- NSF-PAR ID:
- 10062951
- Journal Name:
- RSC Advances
- Volume:
- 8
- Issue:
- 43
- Page Range or eLocation-ID:
- 24128 to 24142
- ISSN:
- 2046-2069
- Publisher:
- Royal Society of Chemistry (RSC)
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract J CO (1–0, 2–1 and 4–3) and [C i ] (1–0) mapping, which we use to trace CO excitation viaR 42=I CO(4−3)/I CO(2−1)andR 21=I CO(2−1)/I CO(1−0)and dissociation viaR CICO=I [CI](1−0)/I CO(2−1)at 330 pc resolution. We find that the gas flowing into the starburst ring from northeast to southwest appears strongly affected by stellar feedback, showing decreased excitation (lowerR 42) and increased signatures of dissociation (higherR CICO) in the downstream regions. There, radiative-transfer modeling suggests that the molecular gas density decreases and temperature and [CI/CO] abundance ratio increase. We compareR 42andR CICOwith local conditions across the regions and find that both correlate with near-IR 2μ m emission tracing the YMCs and with both polycyclic aromatic hydrocarbon (11.3μ m) and dust continuum (21μ m) emission. In general,R CICOexhibits ∼0.1 dex tighter correlations thanR 42, suggestingC i to be a more sensitive tracer of changing physical conditions in the NGC 1365 starburst than CO (4–3). Our results are consistent with a scenario where gas flows into the two armmore » -
Abstract We report a Karl G. Jansky Very Large Array search for redshifted CO(1–0) emission from three H
i -absorption-selected galaxies atz ≈ 2, identified earlier in their CO(3–2) or CO(4–3) emission. We detect CO(1–0) emission from DLA B1228-113 atz ≈ 2.1933 and DLA J0918+1636 atz ≈ 2.5848; these are the first detections of CO(1–0) emission in high-z Hi -selected galaxies. We obtain high molecular gas masses,M mol≈ 1011× (α CO/4.36)M ⊙, for the two objects with CO(1–0) detections, which are a factor of ≈1.5–2 lower than earlier estimates. We determine the excitation of the mid-J CO rotational levels relative to theJ = 1 level,r J 1, in Hi -selected galaxies for the first time, obtainingr 31= 1.00 ± 0.20 andr 41= 1.03 ± 0.23 for DLA J0918+1636, andr 31= 0.86 ± 0.21 for DLA B1228-113. These values are consistent with thermal excitation of theJ = 3 andJ = 4 levels. The excitation of theJ = 3 level in the Hi -selected galaxies is similar to that seen in massive main-sequence and submillimeter galaxies atz ≳2, but higher than that in main-sequence galaxies atz ≈ 1.5; the higher excitation of the galaxies atz ≳ 2 is likely to be due to their higher star formation rate (SFR) surface density. We use Hubble Space Telescope Wide Field Camera 3 imaging to detect the rest-frame near-ultraviolet (NUV)more » -
Abstract We measure the molecular-to-atomic gas ratio,
R mol, and the star formation rate (SFR) per unit molecular gas mass, SFEmol, in 38 nearby galaxies selected from the Virgo Environment Traced in CO (VERTICO) survey. We stack ALMA12CO (J = 2−1) spectra coherently using Hi velocities from the VIVA survey to detect faint CO emission out to galactocentric radiir gal∼ 1.2r 25. We determine the scale lengths for the molecular and stellar components, finding a ∼3:5 relation compared to ∼1:1 in field galaxies, indicating that the CO emission is more centrally concentrated than the stars. We computeR molas a function of different physical quantities. While the spatially resolvedR molon average decreases with increasing radius, we find that the mean molecular-to-atomic gas ratio within the stellar effective radiusR e ,R mol(r <R e ), shows a systematic increase with the level of Hi , truncation and/or asymmetry (HIperturbation). Analysis of the molecular- and the atomic-to-stellar mass ratios withinR e , and , shows that VERTICO galaxies have increasingly lower for larger levels of HIperturbation (compared to field galaxies matched in stellar mass), but no significant change in . We also measure a clear systematic decrease of the SFEmolwithinR e , SFEmol(r <Re ),more » -
Abstract Active galactic nucleus (AGN) feedback is postulated as a key mechanism for regulating star formation within galaxies. Studying the physical properties of the outflowing gas from AGNs is thus crucial for understanding the coevolution of galaxies and supermassive black holes. Here we report 55 pc resolution ALMA neutral atomic carbon [C
i ]3P 1−3P 0observations toward the central 1 kpc of the nearby Type 2 Seyfert galaxy NGC 1068, supplemented by 55 pc resolution CO(J = 1−0) observations. We find that [Ci ] emission within the central kiloparsec is strongly enhanced by a factor of >5 compared to the typical [Ci ]/CO intensity ratio of ∼0.2 for nearby starburst galaxies (in units of brightness temperature). The most [Ci ]-enhanced gas (ratio > 1) exhibits a kiloparsec-scale elongated structure centered at the AGN that matches the known biconical ionized gas outflow entraining molecular gas in the disk. A truncated, decelerating bicone model explains well the kinematics of the elongated structure, indicating that the [Ci ] enhancement is predominantly driven by the interaction between the ISM in the disk and the highly inclined ionized gas outflow (which is likely driven by the radio jet). Our results strongly favor the “CO dissociation scenario” rather than the “in situ C formation” one,more » -
The novel series of heteroleptic Sm(
iii ) halide complexes provides the backdrop for a fluorescence-detected Lα1X-ray absorption spectroscopic study.