skip to main content


Title: Wrapping Nanocellulose Nets around Graphene Oxide Sheets
Abstract

Constructing advanced functional nanomaterials with pre‐designed organized morphologies from low‐dimension synthetic and biological components is challenging. Herein, we report an efficient and universal amphiphilicity‐driven assembly strategy to construct “hairy” flexible hybrid nanosheets with a 1D cellulose nanofibers (CNFs) net conformally wrapped around 2D graphene oxide (GO) monolayers. This interface‐driven bio‐synthetic assembly is facilitated by tailoring the surface chemistry of flexible GO sheets, resulting in individual sheets tightly surrounded by dense conformal nanocellulose network. The mechanical stability of the products far exceeds the compressive instability limits of both individual components. Additionally, the CNF network significantly enhances the wetting ability of initial hydrophobic reduced GO nanosheets, allowing fast water transport combined with high filtration efficiency.

 
more » « less
NSF-PAR ID:
10063117
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
57
Issue:
28
ISSN:
1433-7851
Page Range / eLocation ID:
p. 8508-8513
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    π‐Conjugated polymers have drawn broad interest in flexible electronics due to their solution processability, light weight, and a combination of conducting and light‐emitting properties. However, achieving mechanical endurance and stretchability in freestanding conjugated polymers is still difficult. Surface‐assembly‐induced light‐emitting polymer nanosheets with prodigious mechanical strength and charge transport are reported. Transferring freestanding polymer films onto various templates with conformal contact results in electrical and optical strain sensors with a gauge factor of ≈29. Subsequent geometric engineering into kirigami structures of the polymer sheets further extends the strain accommodations 20‐fold without compromising electric conductivity or fluorescence properties. These as‐prepared semiconducting polymers represent a possible new material for emerging stretchable electronics.

     
    more » « less
  2. null (Ed.)
    Abstract The erroneous flipping of polarity in seismic records of ocean-bottom seismometers (OBSs) could go unnoticed and undiagnosed because it is coupled with unknown horizontal orientation of OBS instruments on the seafloor. In this study, we present detailed approaches to first identify potential errors in the flipping polarity of individual OBS instruments, and then determine the correct orientation of OBS instruments on the seafloor. We first conduct a series of tests by artificially flipping the polarity of seismic records of the Global Seismographic Network stations to determine the effects on orientation estimates, utilizing polarization characteristics of teleseismic P and Rayleigh waves, respectively. The tests demonstrate that erroneous polarity reversal in seismic recording could cause false estimates and reverse radial (R) and tangential (T) components. We determine the sensor orientations through comparing the observed waveforms to the synthetic waveforms, which could solve the ambiguity of R and T directions caused by potential erroneous polarity reversal of OBS data. We then apply the approaches to an OBS data set collected in the southern Mariana subduction zone to obtain the correct orientation for 9 out of 12 OBS instruments. 
    more » « less
  3. Advances in the synthesis and processing of graphene-based materials have presented the opportunity to design novel lithium-ion battery (LIB) anode materials that can meet the power requirements of next-generation power devices. In this work, a poly(methacrylic acid) (PMAA)-induced self-assembly process was used to design super-mesoporous Fe 3 O 4 and reduced-graphene-oxide (Fe 3 O 4 @RGO) anode materials. We demonstrate the relationship between the media pH and Fe 3 O 4 @RGO nanostructure, in terms of dispersion state of PMAA-stabilized Fe 3 O 4 @GO sheets at different surrounding pH values, and porosity of the resulted Fe 3 O 4 @RGO anode. The anode shows a high surface area of 338.8 m 2 g −1 with a large amount of 10–40 nm mesopores, which facilitates the kinetics of Li-ions and electrons, and improves electrode durability. As a result, Fe 3 O 4 @RGO delivers high specific-charge capacities of 740 mA h g −1 to 200 mA h g −1 at various current densities of 0.5 A g −1 to 10 A g −1 , and an excellent capacity-retention capability even after long-term charge–discharge cycles. The PMAA-induced assembly method addresses the issue of poor dispersion of Fe 3 O 4 -coated graphene materials—which is a major impediment in the synthesis process—and provides a facile synthetic pathway for depositing Fe 3 O 4 and other metal oxide nanoparticles on highly porous RGO. 
    more » « less
  4. Driven by the surface activity of graphene, electrically conductive elastomeric foams have been synthesized by the controlled reassembly of graphene sheets; from their initial stacked morphology, as found in graphite, to a percolating network of exfoliated sheets, defining hollow spheres. This network creates a template for the formation of composite foams, whose swelling behavior is sensitive to the composition of the solvent, and whose electrical resistance is sensitive to physical deformation. The self‐assembly of graphene sheets is driven thermodynamically, as graphite is found to act as a 2D surfactant and is spread at high‐energy interfaces. This spreading, or exfoliation, of graphite at an oil/water interface stabilizes water‐in‐oil emulsions, without the need for added surfactants or chemical modification of the graphene. Using a monomer such as butyl acrylate for the emulsion's oil phase, elastomeric foams are created by polymerizing the continuous oil phase. Removal of the aqueous phase then results in robust, conductive, porous, and inexpensive composites, with potential applications in energy storage, filtration, and sensing.

     
    more » « less
  5. Abstract

    The development of synthetic systems that enable the sustained active self‐assembly of molecular blocks to mimic the complexity and dynamic behavior of living systems is of great interest in elucidating the origins of life, understanding the basic principles behind biological organization, and designing active materials. However, it remains a challenge to construct microsystems with dynamic behaviors and functions that are connected to molecular self‐assembly processes driven by external energy. Here, an active self‐assembly of microdroplet protocells with dynamic structure and high structural complexity through living radical polymerization under constant energy flux is reported. The active microdroplet protocells exhibit nonlinear behaviors including oscillatory growth and shrinkage. This relies on the transient stabilization of molecular assembly, which can channel the inflow of energy through noncovalent interactions of pure synthetic components. The intercommunication of microdroplet protocells through stochastic fusion leads to the formation of a variety of dynamic and higher‐order biomimetic microstructures. This work constitutes an important step toward the realization of autonomous and dynamic microsystems and active materials with life‐like properties.

     
    more » « less