With advances in biomedical research, biomarkers are becoming increasingly important prognostic factors for predicting overall survival, while the measurement of biomarkers is often censored due to instruments' lower limits of detection. This leads to two types of censoring: random censoring in overall survival outcomes and fixed censoring in biomarker covariates, posing new challenges in statistical modeling and inference. Existing methods for analyzing such data focus primarily on linear regression ignoring censored responses or semiparametric accelerated failure time models with covariates under detection limits (DL). In this paper, we propose a quantile regression for survival data with covariates subject to DL. Comparing to existing methods, the proposed approach provides a more versatile tool for modeling the distribution of survival outcomes by allowing covariate effects to vary across conditional quantiles of the survival time and requiring no parametric distribution assumptions for outcome data. To estimate the quantile process of regression coefficients, we develop a novel multiple imputation approach based on another quantile regression for covariates under DL, avoiding stringent parametric restrictions on censored covariates as often assumed in the literature. Under regularity conditions, we show that the estimation procedure yields uniformly consistent and asymptotically normal estimators. Simulation results demonstrate the satisfactory finite‐sample performance of the method. We also apply our method to the motivating data from a study of genetic and inflammatory markers of Sepsis.
Censored quantile regression models, which offer great flexibility in assessing covariate effects on event times, have attracted considerable research interest. In this study, we consider flexible estimation and inference procedures for competing risks quantile regression, which not only provides meaningful interpretations by using cumulative incidence quantiles but also extends the conventional accelerated failure time model by relaxing some of the stringent model assumptions, such as global linearity and unconditional independence. Current method for censored quantile regressions often involves the minimization of the
- NSF-PAR ID:
- 10063244
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Biometrical Journal
- Volume:
- 60
- Issue:
- 5
- ISSN:
- 0323-3847
- Page Range / eLocation ID:
- p. 934-946
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
null (Ed.)Summary The net reclassification improvement (NRI) and the integrated discrimination improvement (IDI) were originally proposed to characterize accuracy improvement in predicting a binary outcome, when new biomarkers are added to regression models. These two indices have been extended from binary outcomes to multi-categorical and survival outcomes. Working on an AIDS study where the onset of cognitive impairment is competing risk censored by death, we extend the NRI and the IDI to competing risk outcomes, by using cumulative incidence functions to quantify cumulative risks of competing events, and adopting the definitions of the two indices for multi-category outcomes. The “missing” category due to independent censoring is handled through inverse probability weighting. Various competing risk models are considered, such as the Fine and Gray, multistate, and multinomial logistic models. Estimation methods for the NRI and the IDI from competing risk data are presented. The inference for the NRI is constructed based on asymptotic normality of its estimator, and the bias-corrected and accelerated bootstrap procedure is used for the IDI. Simulations demonstrate that the proposed inferential procedures perform very well. The Multicenter AIDS Cohort Study is used to illustrate the practical utility of the extended NRI and IDI for competing risk outcomes.more » « less
-
Abstract Statistical analysis of longitudinal data often involves modeling treatment effects on clinically relevant longitudinal biomarkers since an initial event (the time origin). In some studies including preventive HIV vaccine efficacy trials, some participants have biomarkers measured starting at the time origin, whereas others have biomarkers measured starting later with the time origin unknown. The semiparametric additive time‐varying coefficient model is investigated where the effects of some covariates vary nonparametrically with time while the effects of others remain constant. Weighted profile least squares estimators coupled with kernel smoothing are developed. The method uses the expectation maximization approach to deal with the censored time origin. The Kaplan–Meier estimator and other failure time regression models such as the Cox model can be utilized to estimate the distribution and the conditional distribution of left censored event time related to the censored time origin. Asymptotic properties of the parametric and nonparametric estimators and consistent asymptotic variance estimators are derived. A two‐stage estimation procedure for choosing weight is proposed to improve estimation efficiency. Numerical simulations are conducted to examine finite sample properties of the proposed estimators. The simulation results show that the theory and methods work well. The efficiency gain of the two‐stage estimation procedure depends on the distribution of the longitudinal error processes. The method is applied to analyze data from the Merck 023/HVTN 502 Step HIV vaccine study.
-
Abstract Quantiles and expected shortfalls are commonly used risk measures in financial risk management. The two measurements are correlated while having distinguished features. In this project, our primary goal is to develop a stable and practical inference method for the conditional expected shortfall. We consider the joint modelling of conditional quantile and expected shortfall to facilitate the statistical inference procedure. While the regression coefficients can be estimated jointly by minimizing a class of strictly consistent joint loss functions, the computation is challenging, especially when the dimension of parameters is large since the loss functions are neither differentiable nor convex. We propose a two‐step estimation procedure to reduce the computational effort by first estimating the quantile regression parameters with standard quantile regression. We show that the two‐step estimator has the same asymptotic properties as the joint estimator, but the former is numerically more efficient. We develop a score‐type inference method for hypothesis testing and confidence interval construction. Compared to the Wald‐type method, the score method is robust against heterogeneity and is superior in finite samples, especially for cases with many confounding factors. The advantages of our proposed method over existing approaches are demonstrated by simulations and empirical studies based on income and college education data.
-
Summary Quantile regression has become a widely used tool for analysing competing risk data. However, quantile regression for competing risk data with a continuous mark is still scarce. The mark variable is an extension of cause of failure in a classical competing risk model where cause of failure is replaced by a continuous mark only observed at uncensored failure times. An example of the continuous mark variable is the genetic distance that measures dissimilarity between the infecting virus and the virus contained in the vaccine construct. In this article, we propose a novel mark-specific quantile regression model. The proposed estimation method borrows strength from data in a neighbourhood of a mark and is based on an induced smoothed estimation equation, which is very different from the existing methods for competing risk data with discrete causes. The asymptotic properties of the resulting estimators are established across mark and quantile continuums. In addition, a mark-specific quantile-type vaccine efficacy is proposed and its statistical inference procedures are developed. Simulation studies are conducted to evaluate the finite sample performances of the proposed estimation and hypothesis testing procedures. An application to the first HIV vaccine efficacy trial is provided.