skip to main content


Title: Supercolloidal Spinners: Complex Active Particles for Electrically Powered and Switchable Rotation
Abstract

A class of supercolloidal particles that controllably spin about their central axis in AC electric fields is reported. The rational design of these “microspinners” enables their rotation in a switchable manner, which gives rise to several interesting and programmable behaviors. It is shown that due to their complex shape and discrete metallic patches on their surfaces, these microspinners convert electrical energy into active motion via the interplay of four mechanisms at different electric field frequency ranges. These mechanisms of rotation include (in order of increasing frequency): electrohydrodynamic flows, reversed electrohydrodynamic flows, induced charge electrophoresis, and self‐dielectrophoresis. As the primary mechanism powering their motion transitions from one phenomenon to the next, these microspinners display three directional spin inversions (i.e., from clockwise to anticlockwise, or vice versa). To understand the mechanisms involved, this experimental study is coupled with scaling analyses. Due to their frequency‐switchable rotation, these microspinners have potential for applications such as interlocking gears in colloidal micromachines. Moreover, the principles used to power their switchable motion can be extended to design other types of supercolloidal particles that harvest electrical energy for motion via multiple electrokinetic mechanisms.

 
more » « less
PAR ID:
10063245
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
28
Issue:
35
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Theoretical and numerical models of active Janus particles commonly assume that the metallo-dielectric interface is parallel to the driving applied electric field. However, our experimental observations indicate that the equilibrium angle of orientation of electrokinetically driven Janus particles varies as a function of the frequency and voltage of the applied electric field. Here, we quantify the variation of the orientation with respect to the electric field and demonstrate that the equilibrium position represents the interplay between gravitational, electrostatic and electrohydrodynamic torques. The latter two categories are functions of the applied field (frequency, voltage) as well as the height of the particle above the substrate. Maximum departure from the alignment with the electric field occurs at low frequencies characteristic of induced-charge electrophoresis and at low voltages where gravity dominates the electrostatic and electrohydrodynamic torques. The departure of the interface from alignment with the electric field is shown to decrease particle mobility through comparison of freely suspended Janus particles subject only to electrical forcing and magnetized Janus particles in which magnetic torque is used to align the interface with the electric field. Consideration of the role of gravitational torque and particle–wall interactions could account for some discrepancies between theory, numerics and experiment in active matter systems. 
    more » « less
  2. In the limit of zero Reynolds number (Re), swimmers propel themselves exploiting a series of nonreciprocal body motions. For an artificial swimmer, a proper selection of the power source is required to drive its motion, in cooperation with its geometric and mechanical properties. Although various external fields (magnetic, acoustic, optical, etc.) have been introduced, electric fields are rarely utilized to actuate such swimmers experimentally in unbounded space. Here we use uniform and static electric fields to demonstrate locomotion of a biflagellated sphere at low Re via Quincke rotation. These Quincke swimmers exhibit three different forms of motion, including a self-oscillatory state due to elastohydrodynamic–electrohydrodynamic interactions. Each form of motion follows a distinct trajectory in space. Our experiments and numerical results demonstrate a method to generate, and potentially control, the locomotion of artificial flagellated swimmers.

     
    more » « less
  3. Hypothesis: Symmetry breaking in an electric field-driven active particle system can be induced by applying a spatially uniform, but temporally non-uniform, alternating current (AC) signal. Regardless of the type of particles exposed to sawtooth AC signals, the unevenly induced polarization of the ionic charge layer leads to a major electrohydrodynamic effect of active propulsion, termed Asymmetric Field Electrophoresis (AFEP). Experiments: Suspensions containing latex microspheres of three sizes, as well as Janus and metal-coated particles were subjected to sawtooth AC signals of varying voltages, frequencies, and time asymmetries. Particle tracking via microscopy was used to analyze their motility as a function of the key parameters. Findings: The particles exhibit field-colinear active propulsion, and the temporal reversal of the AC signal results in a reversal of their direction of motion. The experimental velocity data as a function of field strength, frequency, and signal asymmetry are supported by models of asymmetric ionic concentration-polarization. The direction of particle migration exhibits a size-dependent crossover in the low frequency domain. This enables new approaches for simple and efficient on-chip sorting. Combining AFEP with other AC motility mechanisms, such as induced-charge electrophoresis, allows multiaxial control of particle motion and could enable development of novel AC field-driven active microsystems. 
    more » « less
  4. Spin and valley degrees of freedom in materials without inversion symmetry promise previously unknown device functionalities, such as spin-valleytronics. Control of material symmetry with electric fields (ferroelectricity), while breaking additional symmetries, including mirror symmetry, could yield phenomena where chirality, spin, valley, and crystal potential are strongly coupled. Here we report the synthesis of a halide perovskite semiconductor that is simultaneously photoferroelectricity switchable and chiral. Spectroscopic and structural analysis, and first-principles calculations, determine the material to be a previously unknown low-dimensional hybrid perovskite (R)-(−)-1-cyclohexylethylammonium/(S)-(+)-1 cyclohexylethylammonium) PbI 3 . Optical and electrical measurements characterize its semiconducting, ferroelectric, switchable pyroelectricity and switchable photoferroelectric properties. Temperature dependent structural, dielectric and transport measurements reveal a ferroelectric-paraelectric phase transition. Circular dichroism spectroscopy confirms its chirality. The development of a material with such a combination of these properties will facilitate the exploration of phenomena such as electric field and chiral enantiomer–dependent Rashba-Dresselhaus splitting and circular photogalvanic effects. 
    more » « less
  5. Biological species routinely collaborate for their mutual benefit or compete for available resources, thereby displaying dynamic behavior that is challenging to replicate in synthetic systems. Here we use computational modeling to design microscopic, chemically active sheets and self-propelled particles encompassing the appropriate synergistic interactions to exhibit bioinspired feeding, fleeing, and fighting. This design couples two different mechanisms for chemically generating motion in fluid-filled microchambers: solutal buoyancy and diffusiophoresis. Catalyst-coated sheets, which resemble crabs with four distinct claws, convert reactants in solution into products and thereby create local variations in the density and chemical composition of the fluid. Via the solutal buoyancy mechanism, the density variations generate fluid flows, which modify the shape and motility of the crabs. Concomitantly, the chemical variations propel the motion of the particles via diffusiophoresis, and thus, the crabs’ and particles’ motion becomes highly interconnected. For crabs with restricted lateral mobility, these two mechanisms can be modulated to either drive a crab to catch and appear to feed on all of the particles or enable the particles to flee from this sheet. Moreover, by adjusting the sheet’s size and the catalytic coating, two crabs can compete and fight over the motile, diffusiophoretic particles. Alternatively, the crabs can temporally share resources by shuttling the particles back and forth between themselves. With completely mobile sheets, four crabs can collaborate to perform a function that one alone cannot accomplish. These findings provide design rules for creating chemically driven soft robotic sheets that significantly expand the functionality of microfluidic devices. 
    more » « less